Ratel - New Foundations of Computational Mechanics for the Exascale Era

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

1 May 2025

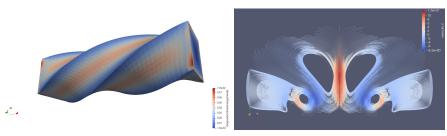
Interrupt Me!

Please interrupt with questions/comments

(Yes, especially you students!)

Overview

- libCEED
- Ratel
- Mentoring
- Questions


libCEED Team

libCEED Repo: https://github.com/CEED/libCEED

Developers: Ahmad Abdelfattah, Zach R. Atkins, Valeria Barra, Natalie Beams, Jed Brown, Jean-Sylvain Camier, Veselin Dobrev, Yohann Dudouit, Leila Ghaffari, Sebastian Grimberg, Tzanio Kolev, David Medina, Will Paznel, Thilina Ratnayaka, Rezgar Shakeri, Stan Tomov, James Wright III, Jeremy L Thompson

Background

libCEED solid mechanics (left) and fluid dynamics (right) mini-apps

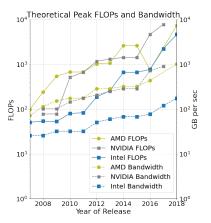
- Physics based simulations widespread in science/engineering
- Intuition: FEM solves equations with piecewise polynomial solution
- libCEED supports FEM-like simulations on modern hardware

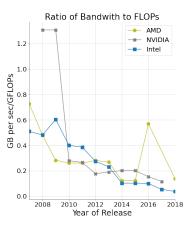
libCEED Projects

Several projects built using libCEED

- Ratel solid mechanics FEM and iMPM (PSAAP)
- HONEE fluid dynamics FEM & differential filtering (PHASTA)
- MFEM various applications, libCEED integrators (LLNL)
- Palace quantum circuit design, MFEM + libCEED (Amazon)
- RDycore FV river dynamical core, PETSc + libCEED (SciDAC)

Top 500

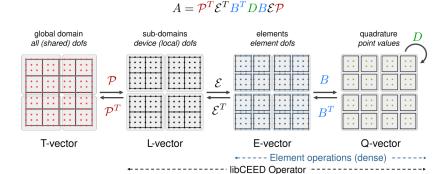

Machine	HPL	HPCG
Fugaku	442.01 PFLOPs	16.01 PFLOPs
Frontier	1,353.00 PFLOPs	14.05 PFLOPs
Aurora	1,012.00 PFLOPs	5.61 PFLOPs
LUMI	379.70 PFLOPs	4.59 PFLOPs
Alps	434.90 PFLOPs	3.57 PFLOPs
Top 500 Machines for HPCC with HPL peak FLOPs		


Top 500 Machines for HPCG with HPL peak FLOPs

HPCG closer to representative FLOPs for simulations

Difficult to realize peak FLOPs with CG on modern machines

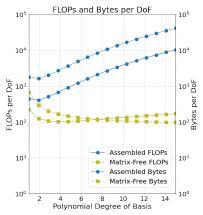
Modern Hardware

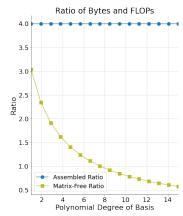


Memory bandwidth is improving slower than FLOPs [2]

Mirrors difference between Top 500 HPL vs HPCG benchmarks [1]

Matrix-Free Operators from libCEED

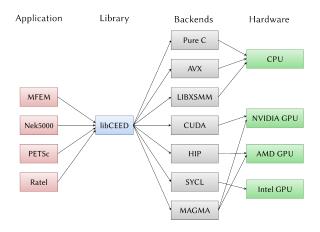



libCEED provides matrix-free operator evaluation on various hardware

------ Global problem -------

Matrix-free operators apply these steps instead of populating a matrix

Benefits of Matrix-Free



Requirements for matrix-vector product with sparse matrix vs matrix-free for screened Poisson $\nabla^2 u - \alpha^2 u = f$ in 3D

Matrix-free representations using tensor product bases better match modern hardware

Performance Portability

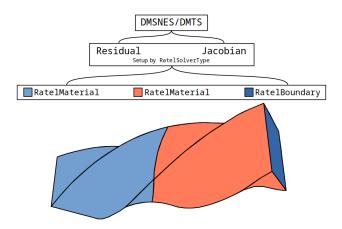
libCEED's design naturally allows multiple hardware implementations

Design Implications

Using matrix-free operators drives design decisions

- Direct solvers are out (assembled matrices, $\mathcal{O}\left(n^2\right)$)
- Iterative solvers are in (Krylov methods, etc)
- High order = high accuracy & bad condition numbers
- Preconditioning is needed for fast convergence

Ratel Team

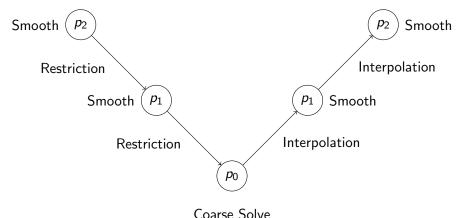


Ratel Repo: https://gitlab.com/micromorph/ratel

Developers: Zach R. Atkins, Jed Brown, Fabio Di Gioacchino, Leila Ghaffari, Zach Irwin, Rezgar Shakeri, Ren Stengel, Jeremy L Thompson

Basic Design

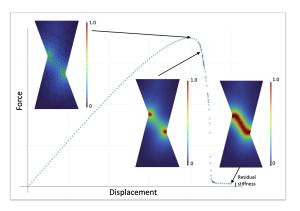
Each material region sets up part of the non-linear and linear equations


Preconditioning Support

Iterative solvers need preconditioning

- Ax = b, slow for ill-conditioned (high-order)
- $P^{-1}Ax = b$, faster for good $P^{-1} \approx A^{-1}$
- Need to balance setup costs and preconditioner effectiveness
- Assembly of diagonal, etc needed

p-multigrid

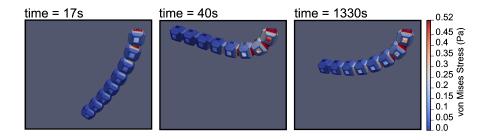

libCEED provides matrix-free p-multigrid

Too General, Need Specifics

Ok, lets look at some specific simulations

Example - Linear Damage

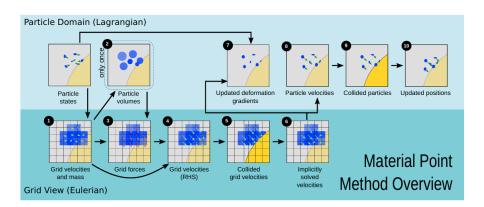
\$ bin/ratel-quasistatic -options_file examples/ymls/ex02quasistatic-elasticity-linear-damage-compressiveshear-AT2-face-forces.yml


Quasistatic simulation of compressive shear for generic brittle material

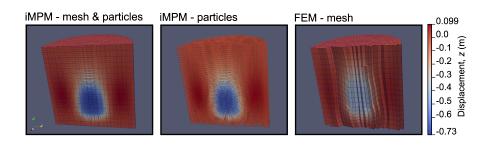
Material Modeling

Modeling costs significant effort

- Derivation and derivatives, multiple places to have bugs
- Automatic differentiation tools can help
- Targeting engineering formulation directly to simulation

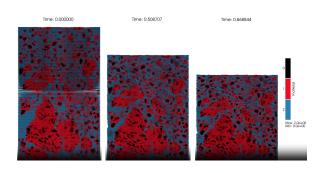

Example - Dynamic Pendulum

\$ bin/ratel-dynamic -options_file examples/ymls/ex03-dynamic -elasticity-schwarz-pendulum-enzyme.yml


Dynamic simulation of Neo-Hookean Schwarz-P "pendulum" with Enzyme

What is MPM?

- Continuum based particle method with background mesh for gradients
- Extension of FLIP (which is an extension of PIC)
- Used in rendering for the movie Frozen


Example - MPM Sinker

\$ bin/ratel-quasistatic -options_file examples/ymls/ex02quasistatic-elasticity-mpm-neo-hookean-damage-currentsinker-cylinder.yml

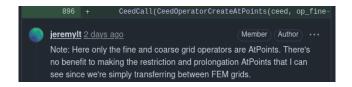
FEM, iMPM simulations of dense sinker in "foam" validation problem

Example - Press Simulation

Compression of mock HE grains, binder mixture

Dev Best Practices

Open Source development best practices provide mentoring framework

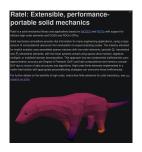

- Issues/planning act as literature review/research plan
- PR/MRs provide feedback about the work
- Testing verifies correctness, to a degree
- Documentation gives an opportunity to show understanding

Planning

- Issues focus the effort and coalesce conversations
- Planning publicly (Issues, Slack/Zulip) records decisions
- Good example: https://gitlab.com/micromorph/ratel/issues/270

Review

- All code can be strengthened with review and feedback
- PR/MRs provide tangible assets to guide any discussion
- Public review lets multiple people comment; prevents surprises


Testing

- Tests communicate intended usage and verify correctness
- New logic must have tests, code coverage is a guide
- Static/dynamic analysis (ASAN, clang-tidy, ...)

Documentation

- Another avenue to communicate/verify understanding
- Documentation can also be used to start papers/dissertations
- Facilitates planning new features, on-boarding new members

Questions?

libCEED Repo: https://github.com/CEED/libCEED Ratel Repo: https://gitlab.com/micromorph/ratel

Grant: Predictive Science Academic Alliance Program (DE-NA0003962)

Ratel - New Foundations of Computational Mechanics for the Exascale Era

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

1 May 2025

Karl Rupp.
CPU-GPU-MIC comparision charts, 2020.

Ratel - New Foundations of Computational Mechanics for the Exascale Era

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

1 May 2025

