Ratel: High Order Solid Mechanics with libCEED and PETSc

Jeremy L Thompson

University of Colorado Boulder jeremy@jeremylt.org

15 August 2023

Ratel Team

Repository: https://gitlab.com/micromorph/ratel

Developers: Zach Atkins, Jed Brown, Leila Ghaffari, Rezgar Shakeri, Ren Stengel, Jeremy L Thompson

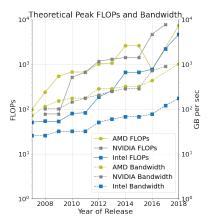
The authors acknowledge support by the Department of Energy, National Nuclear Security Administration, Predictive Science Academic Alliance Program (PSAAP) under Award Number DE-NA0003962.

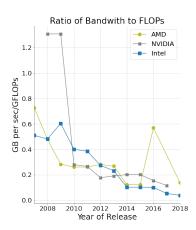
Overview

Ratel - high order, performance portable solid mechanics

Built on libCEED and PETSc

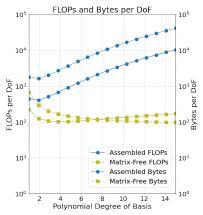
GPU and CPU performance

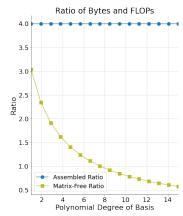

Overview


- Background
- Ratel Features
- iMPM Development Progress
- Future Work

ECP Roots

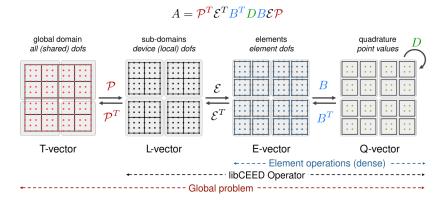
- Ratel built directly on results from ECP CEED project
- libCEED provides high-performance operator evaluation
- PETSc provides linear/non-linear solvers and time steppers
- Ratel built from libCEED + PETSc solid mechanics demo app


Modern Hardware



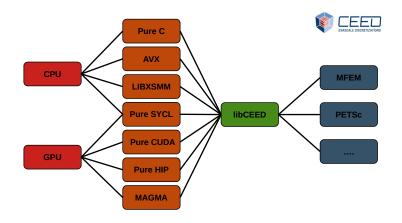
Modern hardware has lower memory bandwidth than FLOPs

Benefits of Matrix-Free

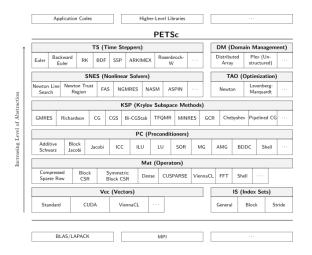


Requirements for matrix-vector product with sparse matrix vs matrix-free for screened Poisson $\nabla^2 u - \alpha^2 u = f$ in 3D

Matrix-free representations using tensor product bases better match modern hardware limitations


Matrix-Free Operators from libCEED

libCEED provides arbitrary order matrix-free operator evaluation



Performance Portability from libCEED

Performance portability with libCEED's matrix-free operators

Extensible Solvers from PETSc

PETSc provides extensible, scalable solvers

Ratel

Ratel supports...

- hyperelastic and plastic material models
- on unstructured meshes with multiple material regions
- with arbitrary order mixed finite elements
- using efficient matrix-free operator evaluation
- with multiple solver and time-stepper options
- and p-multigrid preconditioners using AMG course grid solves
- on both CPU and GPU with runtime selection

Material Models

Ratel supports several material models:

- Linear elasticity
- Neo-Hookean hyperelasticity
- Mooney-Rivlin hyperelasticity
- Odgen hyperelasticity
- Linear plasticity with linear hardening (further work ongoing)
- Linear elasticity with AT2 damage model (in testing)
- CEED benchmark problems
- more in development...

Material Model Specification

```
dm_plex:
    filename: examples/meshes/rod-and-binder.msh
    simplex: 0
  material: rod, binder
  binder:
    model: elasticity-neo-hookean-initial
   E: 2.
   nu: 0.4
10
    label_value: 4
11
12
  rod:
    model: elasticity-mooney-rivlin-initial
14
15
    mu_1: 0.5
    mu_2: 0.5
16
  nu: 0.4
17
    label_value: 3
18
```

Additional Material Models

Many material models support several options:

- Initial configuration
- Current configuration
- Automatic differentiation (Enzyme)
- Isochoric formulation
- Mixed FEM (displacement, pressure split, incompressible materials)

Boundary Conditions

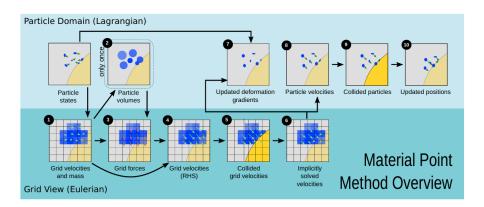
Ratel supports various boundary conditions:

- Time varying Dirichlet clamp
- Time varying Dirichlet slip
- Time varying traction
- Pressure loading due to liquid or gas contact
- Nitsche's method solid contact with Coulomb friction

Boundary Condition Specification

```
bc:
    clamp: 5
2
    clamp_5_translate: -0.2,0,0, 0,0,0, .2,0,0
    clamp_5_rotate: 1,0,0,.2,0, 1,0,0,0,0, 1,0,0,-.2,0,
    clamp_5_times: 0.33, 0.66, 1.0
    clamp_5_interpolation: linear
8
    platen: 6
    platen_6:
      normal: -1,0,0
10
      center: 1.0,0.5,0.5
11
      distance: 0.2
12
      gamma: 1000
13
```

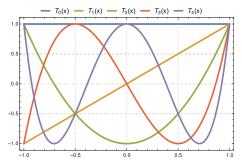
Solver Modes


Three sample applications are provided:

- Static Elasticity
- Quasi-static Elasticity
- Dynamic Elasticity

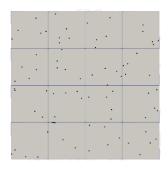
all using p-multigrid + coarse grid AMG by default

What is MPM?

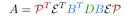


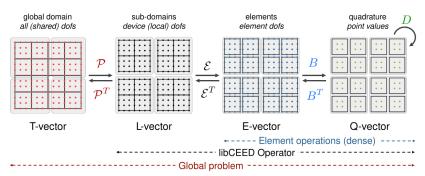
- Continuum based partical method with background mesh for gradients
- Extension of FLIP (which is an extension of PIC)
- Used in rendering for the movie Frozen

What does MPM have to do with FEM?


- Problem on background mesh changes when material points move
- Natural fit for matrix-free representation
- Similar reasoning to use matrix-free for adaptive methods
- Ratel FEM infrastructure provides fast background mesh solves

libCEED Basis Evaluation to Points


- Interpolate from primal to dual (quadrature) space
- Fit Chebyshev polynomials to values at quadrature points
- Evaluate Chebyshev polynomials at reference coords of material points
- Transpose the order for projection to mesh from material points


DMSwarm for Material Points

- PETSc DMSwarm manages material points
- PETSc DMPlex manages cells (elements)
- Exposing API for cell reference coordinates of points

Current Work

Building the libCEED element restriction operation for material points

Also need CeedOperator API to support evaluation at material points

Future Work

- Continued iMPM development
- Addition of fluid dynamics models
- PCPMG and PCFIELDSPLIT integration
- Upstream PETSc + libCEED integration
- Python and Rust interfaces
- User model interface in C and Rust
- We invite contributors and friendly users

Questions?

Repository: https://gitlab.com/micromorph/ratel

Ratel Team: Zach Atkins, Jed Brown, Leila Ghaffari,

Rezgar Shakeri, Ren Stengel, Jeremy L Thompson

Grant: Predictive Science Academic Alliance Program (DE-NA0003962)

