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Introduction

Big Picture

High-order matrix-free representations of PDEs are better suited to
modern hardware than sparse matrices

High-order matrix-free representations require preconditioned
iterative solvers

Local Fourier Analysis (LFA) provides sharp convergence estimates
for these preconditioners

We investigate LFA of Balancing Domain Decomposition by
Constraints (BDDC) for high-order element subdomains

We investigate LFA of p-multigrid with a BDDC smoother

Jeremy L Thompson (CU Boulder) BDDC Preconditioned P-Multigrid April 4, 2022 4



High-Order Matrix-Free FEM

Modern Hardware

Modern hardware has lower memory bandwidth than FLOPs
(https://github.com/karlrupp/cpu-gpu-mic-comparison)
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High-Order Matrix-Free FEM

Benefits of Matrix-Free

Requirements for matrix-vector product with sparse matrix vs matrix-free
for screened Poisson ∇2u − α2u = f in 3D

For more details - see Rezgar Shakeri’s talk Thursday, 13:05 in Session 10B
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High-Order Matrix-Free FEM

Matrix-Free Representation

Weak form for an arbitrary second order PDE:

find u ∈ V such that for all v ∈ V
⟨v , u⟩ =

∫
Ω v · f0 (u,∇u) +∇v : f1 (u,∇u) = 0

(1)

where

· - contraction over fields
: - contraction over fields and spatial dimensions

Note: pointwise functions f0 and f1 don’t depend upon the discretization
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High-Order Matrix-Free FEM

Matrix-Free Representation

Galerkin form for an arbitrary second order PDE:

∑
e

ET

[
(Be

I )
T WeΛ (f0 (u

e ,∇ue)) +
d−1∑
i=0

(
Be
ξ,i

)T WeΛ (f1 (u
e ,∇ue))

]
= 0

(2)
E - element assembly/restriction operator
Be
I - interpolation to quadrature points

Be
ξ,i - derivatives at quadrature points

We - quadrature weights
Λ - pointwise multiplication at quadrature points
ue = Be

I Eeu and ∇ue = {Be
ξ,iEeu}d−1

i=0

Jeremy L Thompson (CU Boulder) BDDC Preconditioned P-Multigrid April 4, 2022 8



High-Order Matrix-Free FEM

libCEED Representation

P - parallel element assembly operator
E - local element assembly operator
B - basis action operator
D - weak form and geometry at quadrature points
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High-Order Matrix-Free FEM

Preconditioning Required

Matrix-free representations require iterative solvers

Iterative solvers are sensitive to conditioning of the operator
(among other factors)

High-order operators are ill-conditioned

Preconditioners are required for good convergence

LFA helps us tune these preconditioners
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LFA of High-Order FEM

LFA Background

Consider a scalar Toeplitz operator Lh on the infinite 1D grid Gh

Lh =̂ [sκ]h (κ ∈ V )

Lhwh (x) =
∑
κ∈V

sκwh (x + κh) (3)

where

V ⊂ Z is an index set
sκ ∈ R are constant coefficients
wh (x) is an l2 function on Gh
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LFA of High-Order FEM

LFA Background

Our function can be diagonalized by the standard Fourier modes:

If for all grid functions φ (θ, x)

Lhφ (θ, x) = L̃h (θ)φ (θ, x) (4)

then L̃h (θ) =
∑

κ∈V sκe
ıθκ is the symbol of Lh
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LFA of High-Order FEM

LFA Background

For a q × q system of equations, the matrix symbol is given by:

Lh =

L
1,1
h · · · L1,q

h
...

...
...

Lq,1h · · · Lq,qh

 ⇒ L̃h =

L̃
1,1
h · · · L̃1,q

h
...

...
...

L̃q,1h · · · L̃q,qh

 (5)
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LFA of High-Order FEM

LFA of High-Order FEM

For a scalar PDE operator on a single 1D finite element

Ã (θ) = QT
(
Ae ⊙

[
eı(xj−xi)θ/h

])
Q (6)

where

Ae = BTDB, Q =

[
I
e0

]
=


1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1
1 0 · · · 0

 (7)
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LFA of High-Order FEM

LFA of High-Order FEM

Natural extension to multiple components and higher dimensions:

Ã (θ) = QT
(
Ae ⊙

[
eı(xj−xi)·θ/h

])
Q (8)

Multiple Components:

Qn = In ⊗ Q (9)

Multiple Dimensions:

Qnd = Q ⊗ Q ⊗ · · · ⊗ Q (10)

Jeremy L Thompson (CU Boulder) BDDC Preconditioned P-Multigrid April 4, 2022 15



LFA of High-Order FEM

Example: Scalar Poisson

∫
∇v∇u =

∫
fv (11)

B - given by tensor H1 Lagrange basis
D - given by quadrature weights and product� �

# mesh
dim = 1
mesh = Mesh1D(1.0)

# basis
p = 3
ncomp = 1
basis = TensorH1LagrangeBasis(p+1, p+1, ncomp, dim)

# weak form
function diffusionweakform(du::Array{Float64}, w::Array{Float64})

return dv = du*w[1]
end� �
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LFA of High-Order FEM

Example: Scalar Poisson

Scalar Poisson problem on quartic elements

Goal: decrease spectral radius with preconditioners
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LFA of High-Order FEM

LFA of High-Order Smoothers

Error propagation operator for smoothers given by

S = I − M−1A (12)

with a symbol given by

S̃ (θ, ω) = I − M̃−1 (θ, ω) Ã (θ) (13)
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LFA of P-Multigrid Methods

Two-Grid Multigrid Error

Multigrid methods target the low frequency error

E2MG = Sf

(
I − PctofA−1

c RftocAf

)
Sf (14)

Af - fine grid operator
A−1
c - coarse grid solve (low frequency error)

Sf - fine grid smoother (high frequency error)
Pctof - coarse to fine grid prolongation operator
Rftoc - fine to coarse grid restriction operator

Grid transfer operators and coarse representation differentiate
h-multigrid and p-multigrid
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LFA of P-Multigrid Methods

Two-Grid Multigrid Error

The definition of the symbol follows naturally:

Ẽ2MG (θ) = S̃f (θ, ω)
(
I − P̃ctof (θ) Ã

−1
c (θ) R̃ftoc (θ) Ãf (θ)

)
S̃f (θ, ω)

(15)
Ãf - fine grid symbol

Ã
−1
c - coarse grid symbol inverse (low frequency error)

S̃f - fine grid smoother symbol (high frequency error)
P̃ctof - coarse to fine grid prolongation symbol
R̃ftoc - fine to coarse grid restriction symbol
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LFA of P-Multigrid Methods

P-Multigrid Transfer Operators

p-multigrid prolongation can be represented as an interpolation
from the coarse to fine grid

Pctof = PT
f ET

f PeEcPc

Pe = IDscaleBctof
(16)

D scales for node multiplicity

Jeremy L Thompson (CU Boulder) BDDC Preconditioned P-Multigrid April 4, 2022 21



LFA of P-Multigrid Methods

Example: P-Multigrid

p-multigrid with third order Chebyshev on quartic to quadratic elements

Significant reduction in spectral radius
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LFA of P-Multigrid Methods

Agressive Coarsening

High-order fine grid is most efficient representation

Linear coarse grid is easier to solve with traditional methods

Want to reduce number of intermediate grids

Typical smoothers do not respond well to agressive coarsening
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LFA of P-Multigrid Methods

Experiments: P-Multigrid with Chebyshev

pfine to pcoarse k = 3 k = 4
LFA libCEED its LFA libCEED its

p = 2 to p = 1 0.076 0.058 9 0.041 0.033 7

p = 4 to p = 2 0.111 0.097 10 0.062 0.050 8
p = 4 to p = 1 0.416 0.398 25 0.295 0.276 18

p = 8 to p = 4 0.197 0.195 15 0.121 0.110 11
p = 8 to p = 2 0.611 0.603 46 0.506 0.469 31
p = 8 to p = 1 0.871 0.861 154 0.827 0.814 112

LFA and experimental two-grid convergence factors with
Chebyshev smoothing for 3D Laplacian

3D manufactured solution on the domain [−3, 3]3 with Dirichlet boundaries:

f (x , y , z) = xyz sin (πx) sin (π (1.23 + 0.5y)) sin (π (2.34 + 0.25z)) (17)
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LFA of BDDC

BDDC Overview

High-order single element subdomains

BDDC - non-overlapping domain decomposition method by Dohrmann
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LFA of BDDC

Broken Subdomains

Non-overlapping domain decomposition of high-order mesh

Global problem only "partially subassembled" on primal (Π) vertices

Remaining interface nodes replicated across broken interface
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LFA of BDDC

Subassembled Problem

Â−1 =
N∑

e=1

Re,T
i Âe,−1Re

i , Âe =

[
Ae

r,r Âe,T
Π,r

Âe
Π,r Âe

Π,Π

]
(18)

Partially subassembled problem is easier to invert

Injection operator Ri maps from global space to broken space
and provides different BDDC variants
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LFA of BDDC

Injection Operators

R1 = diag

([
1

|N (xi )|

])
(19)

where |N (xi )| is node multiplicity
across broken spaces

R2 = R1 − JTHT

He = −Ae,−1
I,I Ae,T

Γ,I

(20)

where H is a harmonic extension,
J a map over the interfaces

Lumped BDDC with R1 cheaper to setup but poorer conditioning

Dirichlet BDDC with R2 equivalent to Dirichlet FETI-DP
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LFA of BDDC

Subassembled Inverse

Âe =

[
Ae

r,r Âe,T
Π,r

Âe
Π,r Âe

Π,Π

]
ŜΠ = AΠ,Π − ÂΠ,rA−1

r ,r Â
T
Π,r (21)

Subassembled problem inverted with Schur complement

Coarse grid problem ŜΠ is easier to solve with traditional methods

Dense high-order element interior inverse A−1
r ,r can be expensive

Fast diagonalization can provide effiecient approximate solver
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LFA of BDDC

Fast Diagonalization

For separable problems of the form

A = aM + bK (22)

Fast Diagonalization provides fast approximate solver

A−1 = ST (aI + bΛ)−1 S (23)

where

SMST = I, SKST = Λ (24)
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LFA of BDDC

Fast Diagonalization

Tensor product bases have tensor product diagonalizations

Convergence impact of approximate solver formulations is
ongoing research

Cheaper to compute Fast Diagonalization solver than invert
assembled subdomain matrices

Reusing diagonalization for injection subdomain operator inverse
mitigates expensive setup cost of Dirichlet BDDC
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LFA of BDDC

LFA of BDDC

˜̂A−1 =

[
I −Ã−1

r,r
˜̂AT
Π,r

0 I

][
Ã−1

r,r 0

0 ˜̂S−1
Π

][
I 0

−ÃΠ,r
˜̂A−1

r,r I

]
(25)

Ã−1
r,r (θ) = A−1

r,r ⊙
[
eı(xj−xi)·θ/h

]
, ˜̂Ar,Π (θ) =

(
Âr,Π ⊙

[
eı(xj−xi)·θ/h

])
QΠ,

˜̂S−1
Π (θ) =

(
QT

Π

(
ŜΠ ⊙

[
eı(xj−xi)·θ/h

])
QΠ

)−1

(26)
Only primal modes are localized for subassembled operator symbol

Symbols of injection operators are relatively straightforward
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LFA of BDDC

Low-Order Validation

m Lumped BDDC Dirichlet BDDC
λmin λmax κ λmin λmax κ

m = 4 1.000 4.444 4.444 1.000 2.351 2.351
m = 8 1.000 12.269 12.269 1.000 3.196 3.196
m = 16 1.000 31.179 31.179 1.000 4.188 4.188
m = 32 1.000 75.761 75.761 1.000 5.335 5.335

Condition numbers and maximal eigenvalues
for low-order macro-elements

Exactly reproduces original work on LFA of low-order subdomains (Brown
and He)
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LFA of BDDC

High-Order Experiments

p Lumped BDDC Dirichlet BDDC
λmin λmax κ λmin λmax κ

p = 2 1.000 2.800 2.800 1.000 2.042 2.042
p = 4 1.000 12.948 12.948 1.000 3.242 3.242
p = 8 1.000 59.563 59.563 1.000 5.197 5.197
p = 16 1.000 289.678 289.678 1.000 7.761 7.761

Condition numbers and maximal eigenvalues
for single high-order element subdomains

Single high-order element subdomains less well conditioned
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LFA of BDDC

Low vs High-Order BDDC

Low-order and high-order subdomain condition number

Dirichlet BDDC important for single high-order element subdomains
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LFA of BDDC

BDDC Smoother for P-Multigrid

Symbol of error operator for Dirichlet
BDDC of 2D Laplacian for p = 4

Dirichlet BDDC smoother still
has large spectral radius, so we
introduce relaxation parameter

Ẽ (θ, ω) = I − ωM̃−1
2 Ã (θ) (27)
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LFA of BDDC

BDDC Smoother for P-Multigrid

pfine to pcoarse Dirichlet BDDC Chebyshev
ρ ωopt its ρ its

p = 2 to p = 1 0.121 0.66 11 0.075 9

p = 4 to p = 2 0.272 0.48 18 0.085 10
p = 4 to p = 1 0.281 0.47 19 0.219 16

p = 8 to p = 4 0.409 0.38 26 0.110 11
p = 8 to p = 1 0.462 0.32 30 0.795 101

p = 16 to p = 8 0.504 0.32 34 0.435 28
p = 16 to p = 1 0.597 0.23 45 0.959 551

Two-grid convergence factor for p-multigrid with BDDC
vs cubic Chebyshev smoothing for 2D Laplacian

Weighted Dirichlet BDDC smoother better supports rapid coarsening
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LFA of BDDC

BDDC Smoother for P-Multigrid

pfine to pcoarse Dirichlet BDDC Chebyshev
ρ ωopt its ρ its

p = 2 to p = 1 0.121 0.66 11 0.252 17

p = 4 to p = 2 0.272 0.48 18 0.281 19
p = 4 to p = 1 0.281 0.47 19 0.424 27

p = 8 to p = 4 0.409 0.38 26 0.278 18
p = 8 to p = 1 0.462 0.32 30 0.873 170

p = 16 to p = 8 0.504 0.32 34 0.613 48
p = 16 to p = 1 0.597 0.23 45 0.975 910

Two-grid convergence factor for p-multigrid with BDDC
vs quadratic Chebyshev smoothing for 2D Laplacian

Weighted Dirichlet BDDC smoother better supports rapid coarsening
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Summary

Summary

High-order matrix-free representations of PDEs are better suited to
modern hardware than sparse matrices

High-order matrix-free representations require preconditioned
iterative solvers

Local Fourier Analysis (LFA) provides sharp convergence estimates
for these preconditioners

We investigated LFA of Balancing Domain Decomposition by
Constraints (BDDC) for high-order element subdomains

Finally, we investigated LFA of p-multigrid with a BDDC smoother
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