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Introduction

Big Picture

High-order matrix-free representations of PDEs are better suited to
modern hardware than sparse matrices

High-order matrix-free representations require preconditioned
iterative solvers

Local Fourier Analysis (LFA) provides sharp convergence estimates
for these preconditioners

We develop LFA of p-multigrid and Balancing Domain Decomposition
by Constraints (BDDC) on high-order element subdomains

We investigate LFA of p-multigrid with a BDDC smoother
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Introduction

Reproducibility

Transparency and reproducibility are the lifeblood of scientific advancement

All software and data used in this dissertation is open source:

https://www.github.com/jeremylt/LFAToolkit.jl

https://www.github.com/CEED/libCEED

https://www.mcs.anl.gov/petsc

https://github.com/jeremylt/dissertation
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High-Order Matrix-Free FEM

Modern Hardware

Modern hardware has lower memory bandwidth than FLOPs [6]
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High-Order Matrix-Free FEM

Benefits of Matrix-Free

Requirements for matrix-vector product with sparse matrix vs matrix-free
for screened Poisson ∇2u − α2u = f in 3D

Matrix-free representations using tensor product bases
better match modern hardware limitations
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High-Order Matrix-Free FEM

Matrix-Free Representation

Weak form for an arbitrary second order PDE [2]:

find u ∈ V such that for all v ∈ V
〈v , u〉 =

∫
Ω v · f0 (u,∇u) +∇v : f1 (u,∇u) = 0

(1)

where

· - contraction over fields
: - contraction over fields and spatial dimensions

Note: pointwise functions f0 and f1 don’t depend upon the discretization
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High-Order Matrix-Free FEM

Matrix-Free Representation

Galerkin form for an arbitrary second order PDE:

∑
e

ET
[

(Ne)T WeΛ (f0 (ue ,∇ue)) +
d−1∑
i=0

(De
i )T WeΛ (f1 (ue ,∇ue))

]
= 0

(2)
E - element assembly/restriction operator
Ne - interpolation to quadrature points
De
i - derivatives at quadrature points

We - quadrature weights
Λ - pointwise multiplication at quadrature points
ue = NeEeu and ∇ue = {De

i Eeu}
d−1
i=0
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High-Order Matrix-Free FEM

libCEED Representation

[1]
P - parallel element assembly operator
G - local element assembly operator
B - basis action operator
D - weak form and geometry at quadrature points
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High-Order Matrix-Free FEM

Preconditioning Required

Matrix-free representations require iterative solvers

Iterative solvers are sensitive to conditioning of the operator
(among other factors)

High-order operators are ill-conditioned

Preconditioners are required for good convergence

LFA helps us tune these preconditioners
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LFA of High-Order FEM

LFA Background

Consider a scalar Toeplitz operator Lh on the infinite 1D grid Gh

Lh =̂ [sκ]h (κ ∈ V )

Lhwh (x) =
∑
κ∈V

sκwh (x + κh) (3)

where

V ⊂ Z is an index set
sκ ∈ R are constant coefficients
wh (x) is an l2 function on Gh
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LFA of High-Order FEM

LFA Background

Our function can be diagonalized by the standard Fourier modes:

If for all grid functions ϕ (θ, x)

Lhϕ (θ, x) = L̃h (θ)ϕ (θ, x) (4)

then L̃h (θ) =
∑

κ∈V sκe
ıθκ is the symbol of Lh

Jeremy L Thompson (CU Boulder) LFA of High-Order Matrix-Free FEM July 8, 2021 13



LFA of High-Order FEM

LFA Background

For a q × q system of equations, the matrix symbol is given by:

Lh =

L
1,1
h · · · L1,qh
...

...
...

Lq,1h · · · Lq,qh

 ⇒ L̃h =

L̃
1,1
h · · · L̃1,qh
...

...
...

L̃q,1h · · · L̃q,qh

 (5)
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LFA of High-Order FEM

LFA of High-Order FEM

For a scalar PDE operator on a single 1D finite element

Ã (θ) = QT
(
Ae �

[
eı(xj−xi)θ/h

])
Q (6)

where

Ae = BTDB, Q =

[
I
e0

]
=


1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1
1 0 · · · 0

 (7)
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LFA of High-Order FEM

LFA of High-Order FEM

Natural extension to multiple components and higher dimensions:

Ã (θ) = QT
(
Ae �

[
eı(xj−xi)·θ/h

])
Q (8)

Multiple Components:

Qn = In ⊗ Q (9)

Multiple Dimensions:

Qnd = Q⊗ Q⊗ · · · ⊗ Q (10)
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LFA of High-Order FEM

Example: Scalar Poisson

∫
∇v∇u =

∫
fv (11)

B - given by tensor H1 Lagrange basis
D - given by quadrature weights and product� �

# mesh
dim = 1
mesh = Mesh1D(1.0)

# basis
p = 3
ncomp = 1
basis = TensorH1LagrangeBasis(p+1, p+1, ncomp, dim)

# weak form
function diffusionweakform(du::Array{Float64}, w::Array{Float64})

return dv = du*w[1]
end� �
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LFA of High-Order FEM

Example: Scalar Poisson

Scalar Poisson problem on quartic elements

Goal: decrease spectral radius with preconditioners
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LFA of High-Order FEM

LFA of High-Order Smoothers

Error propagation operator for smoothers given by

S = I−M−1A (12)

with a symbol given by

S̃ (θ, ω) = I− M̃−1 (θ, ω) Ã (θ) (13)
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LFA of High-Order FEM

Error Symbol

Iterations required to target error tolerances

Maximum spectral radius of error propagation operator determines
convergence rate
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LFA of High-Order FEM

Jacobi Smoothing

Jacobi smoothing given by

M−1 = ω diag (A)−1 (14)

with an error symbol given by

S̃ (θ, ω) = I− ω
(
QT diag (Ae)Q

)−1
Ã (θ) (15)
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LFA of High-Order FEM

Example: Jacobi Smoothing

Jacobi smoothing with ω = 1.0 on quartic elements

Moderate reduction in spectral radius of symbol

Jeremy L Thompson (CU Boulder) LFA of High-Order Matrix-Free FEM July 8, 2021 22



LFA of High-Order FEM

Chebyshev Smoother

Error in kth order Chebyshev smoothing is given by

E0 = I
E1 = I− 1

α (diagA)−1 A
Ek =

(
(diagA)−1 AEk−1 − αEk−1 − βk−2Ek−2

)
/γk−1

(16)

for an operator with a spectrum on the interval [α− c, α + c] where

β0 = − c2

2α γ0 = −α
βk = c

2
Tk (η)

Tk+1(η) =
(
c
2

)2 1
γk

γk = c
2
Tk+1(η)
Tk (η) = − (α + βk−1).

(17)
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LFA of High-Order FEM

Chebyshev Smoother

The error symbol of kth order Chebyshev smoother is given by

Ẽ0 (θ) = I
Ẽ1 (θ) = I− 1

α ÃJ Ã (θ)

Ẽk (θ) =
(
ÃJ Ã (θ) Ẽk−1 (θ)− αẼk−1 (θ)− βk−2Ẽk−2 (θ)

)
/γk−1

(18)

with ÃJ being the symbol of the Jacobi preconditioner
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LFA of High-Order FEM

Example: Chebyshev Smoothing

Third order Chebyshev smoothing quartic elements

Improved reduction in spectral radius of symbol
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LFA of Multigrid Methods

Two-Grid Multigrid Error

Multigrid methods target the low frequency error

E2MG = Sf
(
I− PctofA−1c RftocAf

)
Sf (19)

Af - fine grid operator
A−1c - coarse grid solve (low frequency error)
Sf - fine grid smoother (high frequency error)
Pctof - coarse to fine grid prolongation operator
Rftoc - fine to coarse grid restriction operator

Grid transfer operators and coarse representation differentiate
h-multigrid and p-multigrid
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LFA of Multigrid Methods

Two-Grid Multigrid Error

The definition of the symbol follows naturally:

Ẽ2MG (θ) = S̃f (θ, ω)
(
I− P̃ctof (θ) Ã

−1
c (θ) R̃ftoc (θ) Ãf (θ)

)
S̃f (θ, ω)

(20)
Ãf - fine grid symbol

Ã
−1
c - coarse grid symbol inverse (low frequency error)

S̃f - fine grid smoother symbol (high frequency error)
P̃ctof - coarse to fine grid prolongation symbol
R̃ftoc - fine to coarse grid restriction symbol
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LFA of Multigrid Methods P-Multigrid

P-Multigrid Transfer Operators

p-multigrid prolongation can be represented as an interpolation
from the coarse to fine grid

Pctof = PT
f G

T
f P

eGcPc

Pe = IDscaleBctof
(21)

D scales for node multiplicity
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LFA of Multigrid Methods P-Multigrid

Example: P-Multigrid

p-multigrid with third order Chebyshev on quartic to quadratic elements

Significant reduction in spectral radius
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LFA of Multigrid Methods P-Multigrid

Validation: P-Multigrid

pfine to pcoarse LFA libCEED

p = 2 to p = 1 0.312 0.301

p = 4 to p = 2 1.436 1.402
p = 4 to p = 1 1.436 1.401

p = 8 to p = 4 1.989 1.885
p = 8 to p = 2 1.989 1.874
p = 8 to p = 1 1.989 1.875

LFA and experimental two-grid convergence factors with Jacobi smoothing
for 3D Laplacian with ω = 1.0

3D manufactured solution on the domain [−3, 3]3 with Dirichlet boundaries:

f (x , y , z) = xyz sin (πx) sin (π (1.23 + 0.5y)) sin (π (2.34 + 0.25z)) (22)
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LFA of Multigrid Methods P-Multigrid

Validation: P-Multigrid

pfine to pcoarse k = 3 k = 4
LFA libCEED its LFA libCEED its

p = 2 to p = 1 0.076 0.058 9 0.041 0.033 7

p = 4 to p = 2 0.111 0.097 10 0.062 0.050 8
p = 4 to p = 1 0.416 0.398 25 0.295 0.276 18

p = 8 to p = 4 0.197 0.195 15 0.121 0.110 11
p = 8 to p = 2 0.611 0.603 46 0.506 0.469 31
p = 8 to p = 1 0.871 0.861 154 0.827 0.814 112

LFA and experimental two-grid convergence factors with
Chebyshev smoothing for 3D Laplacian

Iterations required to reach 10x reduction in error grows with
rapid coarsening
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LFA of Multigrid Methods H-Multigrid

H-Multigrid Transfer Operators

h-multigrid prolongation can be represented as an interpolation
from the coarse grid to fine grid macro-elements

Pctof = PT
f G

T
f P

eGcPc

Pe = IDscaleBctof
(23)

D scales for node multiplicity
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LFA of Multigrid Methods H-Multigrid

Example: H-Multigrid

h-multigrid with third order Chebyshev on linear elements

Significant reduction in spectral radius
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LFA of Multigrid Methods H-Multigrid

Validation: H-Multigrid

p, d ν = (0, 1) ν = (1, 1) ν = (2, 2)
ρ ω ρ ω ρ ω

p = 2, d = 1 0.821 1.000 0.821 1.000 1.279 1.000
p = 2, d = 1 0.526 0.838 0.495 0.838 0.302 0.838
p = 2, d = 1 0.291 0.709 0.249 0.709 0.064 0.709

p = 3, d = 1 0.491 0.650 0.337 0.650 0.131 0.650

p = 4, d = 1 0.608 0.640 0.559 0.640 0.331 0.640

p = 2, d = 2 0.452 1.000 0.288 1.000 0.091 1.000

Two-grid convergence factor and Jacobi smoothing parameter
for high-order h-multigrid

Results agree with previous work [4]
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LFA of BDDC

BDDC Overview

High-order single element subdomains

BDDC - non-overlapping domain decomposition method by Dohrmann [3]
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LFA of BDDC

Broken Subdomains

Non-overlapping domain decomposition of high-order mesh

Global problem only "partially subassembled" on primal (Π) vertices

Remaining interface nodes replicated across broken interface
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LFA of BDDC

Subassembled Problem

Â−1 =
N∑

e=1

Re,T
i Âe,−1Re

i , Âe =

[
Ae
r,r Âe,T

Π,r
Âe

Π,r Âe
Π,Π

]
(24)

Partially subassembled problem is easier to invert

Injection operator Ri maps from global space to broken space
and provides different BDDC variants
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LFA of BDDC

Injection Operators

R1 = diag

([
1

|N (xi )|

])
(25)

where |N (xi )| is node multiplicity
across broken spaces

R2 = R1 − JTHT

He = −Ae,−1
I,I Ae,T

Γ,I

(26)

where H is a harmonic extension,
J a map over the interfaces

Lumped BDDC with R1 cheaper to setup but poorer conditioning

Dirichlet BDDC with R2 equivalent to Dirichlet FETI-DP [5]
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LFA of BDDC

Fast Diagonalization

For separable problems of the form

A = aM + bK (27)

Fast Diagonalization provides fast approximate solver

A−1 = ST (aI + bΛ)−1 S (28)

where

SMST = I, SKST = Λ (29)
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LFA of BDDC

Fast Diagonalization

Tensor product bases have tensor product diagonalizations

Convergence impact of approximate solver formulations is
ongoing research

Cheaper to compute Fast Diagonalization solver than invert
assembled subdomain matrices

Reusing diagonalization for both subdomain solvers mitigates
expensive setup cost of Dirichlet BDDC
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LFA of BDDC

LFA of BDDC

˜̂A−1 =

[
I −Ã−1r,r

˜̂AT
Π,r

0 I

][
Ã−1r,r 0

0 ˜̂S−1Π

][
I 0

−ÃΠ,r
˜̂A−1r,r I

]
(30)

Ã−1r,r (θ) = A−1r,r �
[
eı(xj−xi)·θ/h

]
, ˜̂Ar,Π (θ) =

(
Âr,Π �

[
eı(xj−xi)·θ/h

])
QΠ,

˜̂S−1Π (θ) =
(
QT

Π

(
ŜΠ �

[
eı(xj−xi)·θ/h

])
QΠ

)−1
(31)

Only primal modes are localized for subassembled operator symbol

Symbols of injection operators are relatively straightforward
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LFA of BDDC

Low-Order Validation

m Lumped BDDC Dirichlet BDDC
λmin λmax κ λmin λmax κ

m = 4 1.000 4.444 4.444 1.000 2.351 2.351
m = 8 1.000 12.269 12.269 1.000 3.196 3.196
m = 16 1.000 31.179 31.179 1.000 4.188 4.188
m = 32 1.000 75.761 75.761 1.000 5.335 5.335

Condition numbers and maximal eigenvalues
for low-order macro-elements

Exactly reproduces original work on LFA of low-order subdomains

Jeremy L Thompson (CU Boulder) LFA of High-Order Matrix-Free FEM July 8, 2021 42



LFA of BDDC

High-Order Experiments

p Lumped BDDC Dirichlet BDDC
λmin λmax κ λmin λmax κ

p = 2 1.000 2.800 2.800 1.000 2.042 2.042
p = 4 1.000 12.948 12.948 1.000 3.242 3.242
p = 8 1.000 59.563 59.563 1.000 5.197 5.197
p = 16 1.000 289.678 289.678 1.000 7.761 7.761

Condition numbers and maximal eigenvalues
for single high-order element subdomains

Single high-order element subdomains less well conditioned
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LFA of BDDC

Low vs High-Order BDDC

Low-order and high-order subdomain condition number

Dirichlet BDDC important for single high-order element subdomains
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LFA of BDDC

BDDC Smoother for P-Multigrid

Symbol of error operator for Dirichlet
BDDC of 2D Laplacian for p = 4

Dirichlet BDDC smoother still
has large spectral radius, so we
introduce relaxation parameter

Ẽ (θ, ω) = I− ωM̃−12 Ã (θ) (32)
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LFA of BDDC

BDDC Smoother for P-Multigrid

pfine to pcoarse Dirichlet BDDC Chebyshev
ρ ωopt its ρ its

p = 2 to p = 1 0.121 0.66 11 0.075 9

p = 4 to p = 2 0.272 0.48 18 0.085 10
p = 4 to p = 1 0.281 0.47 19 0.219 16

p = 8 to p = 4 0.409 0.38 26 0.110 11
p = 8 to p = 1 0.462 0.32 30 0.795 101

p = 16 to p = 8 0.504 0.32 34 0.435 28
p = 16 to p = 1 0.597 0.23 45 0.959 551

Two-grid convergence factor for p-multigrid with BDDC
vs cubic Chebyshev smoothing for 2D Laplacian

Weighted Dirichlet BDDC smoother better supports rapid coarsening
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LFA of BDDC

BDDC Smoother for P-Multigrid

pfine to pcoarse Dirichlet BDDC Chebyshev
ρ ωopt its ρ its

p = 2 to p = 1 0.121 0.66 11 0.252 17

p = 4 to p = 2 0.272 0.48 18 0.281 19
p = 4 to p = 1 0.281 0.47 19 0.424 27

p = 8 to p = 4 0.409 0.38 26 0.278 18
p = 8 to p = 1 0.462 0.32 30 0.873 170

p = 16 to p = 8 0.504 0.32 34 0.613 48
p = 16 to p = 1 0.597 0.23 45 0.975 910

Two-grid convergence factor for p-multigrid with BDDC
vs quadratic Chebyshev smoothing for 2D Laplacian

Weighted Dirichlet BDDC smoother better supports rapid coarsening
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Summary

Summary

High-order matrix-free representations of PDEs are better suited to
modern hardware than sparse matrices

High-order matrix-free representations require preconditioned
iterative solvers

Local Fourier Analysis (LFA) provides sharp convergence estimates
for these preconditioners

We develop LFA of p-multigrid and Balancing Domain Decomposition
by Constraints (BDDC) on high-order element subdomains

Finally, we investigated LFA of p-multigrid with a BDDC smoother
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Summary

Future Work

Local Fourier Analysis of

hp-multigrid methods

BDDC with inexact subdomain solvers

mixed finite elements or modal bases

BDDC with enriched primal spaces

overlapping domain decomposition methods
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