Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 [e]

libCEED tutorial

Valeria Barra! and Jeremy Thompson?!+
! Department of Computer Science, CU Boulder
2 Department of Applied Math, CU Boulder
(remotely for)

CEED 4 AM
August 12, 2020

T CEED

@ Un|VerS|ty Of CO|oradO EXASCALE DISCRETIZATIONS

E@\)P

EXASCALE COMPUTING PROJECT

1’1'1'
...

Are you:

@ A Finite Elements library or app developer?

EXASCALE DISCRETIZATIONS

" CEED

libCEED tutorial CEED 4th Annual Meeting 1/22

Are you:

@ A Finite Elements library or app developer? e

EXASCALE DISCRETIZATIONS

" CEED

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance
©0000000 0000 [e]e}

Is this tutorial for you?
Are you:

@ A Finite Elements library or app developer?

@ A scientist that wants to solve a PDE fast?

Miniapps Conclusions
0000000 [e]

EXASCALE DISCRETIZATIONS

libCEED tutorial

CEED 4th Annual Meeting 1/22

Introduction Live demo Performance
©0000000 0000 [e]e}

Is this tutorial for you?
Are you:

@ A Finite Elements library or app developer?

@ A scientist that wants to solve a PDE fast?

Miniapps Conclusions
0000000 [e]

@D

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial

CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
@0000000 0000 (oo} 0000000 o]

Is this tutorial for you?

Are you:
@ A Finite Elements library or app developer? e
@ A scientist that wants to solve a PDE fast? o
@ An algorithm developer that wants to evaluate/apply new FE

methods?

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
@0000000 0000 (oo} 0000000 o]

Is this tutorial for you?

Are you:
@ A Finite Elements library or app developer? e
@ A scientist that wants to solve a PDE fast? o/

@ An algorithm developer that wants to evaluate/apply new FE
methods? o

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
@0000000 0000 (oo} 0000000 o]

Is this tutorial for you?

Are you:
@ A Finite Elements library or app developer? e
@ A scientist that wants to solve a PDE fast? o
@ An algorithm developer that wants to evaluate/apply new FE

methods? ©

A solver developer that wants to easily compose FE tech?

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
@0000000 0000 (oo} 0000000 o]

Is this tutorial for you?

Are you:
@ A Finite Elements library or app developer? e
@ A scientist that wants to solve a PDE fast? o
@ An algorithm developer that wants to evaluate/apply new FE

methods? ©

A solver developer that wants to easily compose FE tech? o/

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
@0000000 0000 (oo} 0000000 o]

Is this tutorial for you?

Are you:
@ A Finite Elements library or app developer? e
@ A scientist that wants to solve a PDE fast? o
@ An algorithm developer that wants to evaluate/apply new FE

methods? ©

A solver developer that wants to easily compose FE tech? o/

A perf engineer and/or vendor rep who wants to understand the
essential algebraic needs of high-performance FE?

N
k CEEDQO

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
@0000000 0000 (oo} 0000000 o]

Is this tutorial for you?

Are you:
@ A Finite Elements library or app developer? e
@ A scientist that wants to solve a PDE fast? o
@ An algorithm developer that wants to evaluate/apply new FE

methods? ©

A solver developer that wants to easily compose FE tech? o/

A perf engineer and/or vendor rep who wants to understand the
essential algebraic needs of high-performance FE? o/

N
k CEEDQO

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
@0000000 0000 (oo} 0000000 o]

Is this tutorial for you?

Are you:
@ A Finite Elements library or app developer? e
@ A scientist that wants to solve a PDE fast? o
@ An algorithm developer that wants to evaluate/apply new FE

methods? ©

@ A solver developer that wants to easily compose FE tech? o/
@ A perf engineer and/or vendor rep who wants to understand the
essential algebraic needs of high-performance FE? o/
R
We've got you covered! »

N
k CEEDQO

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 1/22

Introduction Live demo Performance Miniapps Conclusions
0@000000 0000 (oo} 0000000 [e]

I|bCEED the I|brary W|th|n CEED (Center for Efficient Exascale Discretizations)

@ Primary target: high-order finite/spectral
element methods (FEM/SEM) exploiting
tensor-product structure

@ Open source (BSD-2 license) C library with
Fortran and Python interfaces

@ Releases: v0.1 (January 2018), v0.2 (March
2018), v.0.3 (September 2018), v0.4
(March 2019), v0.5 (September 2019),
v0.6 (March 2020)

For latest release:

Kolev T., Fischer P., Abdelfattah A., Ananthan S., Barra V., Beams N., Brown
J. et al., CEED ECP Milestone Report: Improve performance and capabilities
of CEED-enabled ECP applications on Summit/Sierra (2020, March 31%*) DOI:
http://doi.org/10.5281/zenodo.3860804

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 2/22

http://doi.org/10.5281/zenodo.3860804

Introduction Live demo Performance Miniapps Conclusions
00@00000 0000 00 0000000 (e}

libCEED backends

EXASCALE DISCRETIZATIONS

CEEU

§ EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 3/22

Introduction Live demo Performance Miniapps Conclusions
000@0000 0000 (oo} 0000000 o]

libCEED decomposition

A=PTe"BTDREP

global domain sub-domains elements quadrature
all (shared) dofs device (local) dofs element dofs point values /)

P EEIEE _g. 5 2 BRG]
‘P_T 3 R L Y S ey Y | Y —DDDD
aallaa aolloo o liie it =St s |:||:||:||:|

T-vector L-vector E-vector Q-vector
-——--- Element operations (dense) ------ -
Rttt IIbCEED Operator =======-======-=-=----- .
Reiaieininiateieiaiiieleleleteiateteialeiieele Global problem ================----------on-- g

@ & - CeedElemRestriction, local gather/scatter

@ B - CeedBasis, provides basis operations such as interp and grad
@ D - CeedQFunction, representation of PDE at quadrature points
@ A - CeedOperator, aggregation of libCEED objects

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 4/22

User-defined
QFunctions:

-V - (k(x)Vu)

" CEED

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 5/22

Introduction Live demo Performance
00008000 0000 [e]e}

Point-wise QFunctions

User-defined
QFunctions:

—V - (k(x)Vu)

or from libCEED's
Gallery:

V- (Vu)

are point-wise
functions that do not
depend on element
resolution, topology,
or basis order

Miniapps
0000000

Conclusions
[e]

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial

CEED 4th Annual Meeting

5/22

Introduction Live demo Performance
00008000 0000 [e]e}

Point-wise QFunctions

User-defined
QFunctions:

—V - (k(x)Vu)

or from libCEED's
Gallery:

V- (Vu)

are point-wise
functions that do not
depend on element
resolution, topology,
or basis order

Miniapps
0000000

Conclusions
[e]

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial

CEED 4th Annual Meeting

5/22

Introduction Live demo
00008000 0000

Point-wise QFunctions

User-defined
QFunctions:

—V - (k(x)Vu)

or from libCEED's
Gallery:

V- (Vu)

are point-wise
functions that do not
depend on element
resolution, topology,
or basis order

Performance Miniapps Conclusions
(oo} 0000000 [e]

l

N
|- CEEDQO

EXASCALE DISCRETIZATIONS

libCEED tutorial

CEED 4th Annual Meeting 5/22

Introduction Live demo

00000800 0000

Performance
(oo}

libCEED's Python interface

Miniapps Conclusions
0000000 [e]

Classes:
Ceed] Vector] ElemRestriction
Basis QFunction Operator

EXASCALE DISCRETIZATIONS

libCEED tutorial

CEED 4th Annual Meeting 6/22

Introduction Live demo Performance
00000800 0000 [e]e}

libCEED's Python interface

Miniapps Conclusions
0000000 [e]

Classes:
Ceed] Vector ElemRestriction
[Basis QFunction Operator

CeedVector's data

numpy .array I

numba.cuda.device_array

EXASCALE DISCRETIZATIONS

libCEED tutorial

CEED 4th Annual Meeting 6/22

Introduction Live demo Performance Miniapps Conclusions
(oo} 0000000 [e]

00000800 0000

libCEED's Python interface

)
Ceed ElemRestriction]
Basis QFunction Operator

More details:

Barra V., Brown J., Thompson J., Dudouit Y., High-performance op-
erator evaluations with ease of use: lIbCEED’s Python interface, Pro-
ceedings of the 19th Python in Science Conference (2020, July 12) DOI:
http://doi.org/10.25080/Majora-342d178e-00c

>
W CEED
CEED 4th Annual Meeting 6/22

libCEED tutorial

http://doi.org/10.25080/Majora-342d178e-00c

Introduction Live demo Performance Miniapps Conclusions
00000080 0000 (oo} 0000000 o]

Documentation

Our (very first!) user manual can be found at:

https://libceed.readthedocs.io

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 7/22

https://libceed.readthedocs.io

Introduction Live demo Performance Miniapps Conclusions
0000000e 0000 (oo} 0000000 o]

libCEED's Python interface tutorials

More info on our Python interface and interactive Jupyter notebook
tutorials can be found at:

https://qrgo.page.link/YvwiP

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 8/22

https://qrgo.page.link/YvwiP

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 [e]

libCEED + PETSc

For the purpose of separation of concerns (e.g., mesh handling or
time-stepping) we use PETSc for some hands-on exercises in this tutorial.

If you want to visualize the outputs produced by some of our

miniapps in .vtu or .vtk format, it is recommended that you
use Paraview or Visit.

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 9/22

https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/

Introduction Live demo Performance Miniapps Conclusions
00000000 0@00 (oo} 0000000 [e]

If you need PETSc on your machine

PETSc can be found on ALCF, OLCF, NERSC facilities. But if you want
to experiment locally on your machine

$ git clone git@gitlab.com:petsc/petsc.git
$ cd petsc
$ export PETSC_DIR=$PWD

$./configure PETSC_ARCH=arch-tutorial-debug-no-fortran
--with-fortran-bindings=0

$ make PETSC_DIR=$PETSC_DIR)\
PETSC_ARCH=arch-tutorial-debug-no-fortran all

$ make PETSC_DIR=$PETSC DIR \
PETSC_ARCH=arch-tutorial-debug-no-fortran check

W CLEED

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 10/22

Introduction Live demo Performance Miniapps Conclusions
00000000 [e]e] [e} (oo} 0000000 [e]

Download and build libCEED

Now we are ready to download and build libCEED in a sibling directory
relative to the one were we have just built PETSc.

$cd ../
$ git clone git@github.com:CEED/1ibCEED.git
$ cd 1ibCEED
$ make
To build and run our libCEED+PETSc examples:
$ cd examples/petsc
$ make PETSC_DIR=$PETSC DIR \

PETSC_ARCH=arch-tutorial-debug-no-fortran
$./bpsraw

' CEED

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 11/22

Introduction Live demo Performance Miniapps Conclusions
00000000 [e]ele] } (oo} 0000000 [e]

Online tutorial

If you can't/don't want to install locally on your machine, you can follow
this tutorial online on Binder

https://bit.ly/
libceed-petsc-tutorial

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 12/22

https://mybinder.org/v2/gh/CEED/libCEED/tutorial
https://bit.ly/libceed-petsc-tutorial
https://bit.ly/libceed-petsc-tutorial

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 1o 0000000 [e]

Noether

Performance on an AMD EPYC: [ibXSMM

Noether (2x EPYC 7452), gcc-10

2.0 2.0 bp
01
18 18 02
16 16 /\ 3
c c
014 Q14 degree
5]
g . g 0!
212 212 02
Y] o L k]
V1o V1o D4
= X =
2 H o5
w08 L w08 6
Iy / N\ Iy °
o g N\ [7
006 N\ —Z 006
© N ° num_unknowns
0.4 0.4 ° 1,000
O 10,000
0.2 A—A 0.2 () 100,000
0.00001 0.0001 0.0010.002 0.01 0.02 0.1 10,000 30,000 100,000200,000 1,000,000 3,000,000
Time per iteration [seconds] Points per compute node

Figure: 2x AMD EPYC 7452 (32-core) with gcc-10 compiler. LIBXSMM blocked backend
(q=P+1, P=p+1) with respect to time (left) and problem size (right)

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 13/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 oe 0000000 (e}
Noether

GPU results: MFEM + libCEED

169 Config: MFEM/ceed-cuda-ref, host: lassen (1 node, 1 task/node), gec, BP3 19 Config: MFEM/ceed-cuda, host:lassen (1 node, 1 task/node), gec, BP3
— p=1 e p=i
25| _- 25 -
CUDA-ref oo p2 oo p2 CUDA-gen
o p=3 oo p=3
s p=4 = oo p=4
oo p=5 H o p=s
20 o0 p6 §2°0 o p=
o p=7 x oo p=7
oo p=g g |[oe ps
| P
15 é\s oo p=10
g [le pmt
B ® e p=12
5 ||ee p13
19 510f[e e p14
3
g
' =25 % p=6 éns
5% , =6 &
=
7'?7:*{':2 p=2
aa/"’/f} o pe
09 200 050 X o
102 10¢ 108 108 107 100 104 108 106 107
Points per MPI task Points per compute node

Results by Yohann Dudouit on Lassen (LLNL): CUDA-ref (left) and CUDA-gen
(right) backends performance for BP3 on a NVIDIA V100 GPU.

% CEED

§ EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 14 /22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 00 ©000000 (e}

CFD miniapps: a compressible Navier-Stokes solver

9p

E—FV-U—O, (13)
au usu
EJFV-(© +P13)+pgk=V-0', (1b)

aE_'_V. <(E+P)U

= ; >:V-(u-c+kVT), (1c)

where 0 = u(Vu+ (Vu)T +A(V - u)l;), and
Eq. of state: (cp/cy, —1) (E—U-U/(2p) — pgz) =P

% CEED

§ EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 15/22

Live demo Performance Miniapps Conclusions

Introduction
00 0@00000 (e}

00000000 0000

BPs on the cubed-sphere

Converted BP1 (Mass operator) & BP3 (Poisson’s equation) on the
cubed-sphere as a prototype for shallow-water equations solver (WIP)

ou - 1
=Wt Nkxu-v <§Iul2+g(h+hs)) (2a)
oh_ . (ho +h)u (2b)

% CEED

§ EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 16 /22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 00 00e0000 (e}

Solid mechanics miniapp

Arbitrary order solid mechanics mini-app on unstructured meshes

Three modes:
@ Linear elasticity
@ Neo-Hookean hyperelasticity at small strain
@ Neo-Hookean hyperelasticity at finite strain

Diagnostics hanEnergyDendly

% CEED

§ EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 17/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 000e000 o

Solid mechanics miniapp

Solver:
@ PETSc SNES nonlinear solver with load increments

@ Preconditioned CG on linearized problem

Preconditioning:
@ p-multigrid with matrix-free transfer operators
@ Jacobi smoothing with true operator diagonal
@ AMG on the coarse level
@ Runtime selection of CPU or GPU backends

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 18 /22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000800 o

p-multigrid

3 level multigrid with PETSc PCMG

Restriction Interpolation

Coarse Solve - AMG on liner elements

Smoother - Jacobi with operator diagonal

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 19/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000080 o

Grid transfer operators

Restriction / Interpolation is largely a basis operation

@ General libCEED Operator
AL =E&TBTDBE

@ Interpolation Operator
Actor = EIT L Beior&y

@ Interpolation basis
Bctof - RilQTBc
B =0QR

N
|- CEEDQO

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 20/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 000000e o

Current support

p-multigrid
CeedOperatorMultigridLevelCreate (CeedOperator opFine,
CeedVector PMultFine,
CeedElemRestriction rstrCoarse,
CeedBasis basisCoarse, CeedOperator *opCoarse,
CeedOperator *opProlong, CeedOperator *opRestrict)

Operator Diagonal

CeedOperatorLinearAssembleDiagonal (CeedOperator op,
CeedVector assembled, CeedRequest *request)

Point Block Diagonal

CeedOperatorLinearAssemblePointBlockDiagonal (
CeedOperator op, CeedVector assembled,
CeedRequest *request)

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 21/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 L]

Outlook

Ongoing and future work:

o Algorithmic differentiation of Q-Functions

@ Ongoing work on CUDA and HIP
optimizations

@ Complete SWE solver on the cubed-sphere

@ We always welcome contributors and users
https://github.com/CEED/1ibCEED

W CLEED

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

https://github.com/CEED/libCEED

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 L]

Outlook

Ongoing and future work:

o Algorithmic differentiation of Q-Functions

@ Ongoing work on CUDA and HIP
optimizations

@ Complete SWE solver on the cubed-sphere

@ We always welcome contributors and users
https://github.com/CEED/1ibCEED

Acknowledgements: Exascale Computing Project (17-SC-20-SC)

Thank you!

W CLEED

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

https://github.com/CEED/libCEED

Introduction Live demo Performance Miniapps

Conclusions
00000000 0000 (oo}

0000000 o

Why matrix-free? And why high-order?

bytes /dof
flops /dof

tensor b=1
=l tensorb=3
tensor-gstore b =1
—<&- tensor-gstore b =3
—@— assembled b=1
~@®- assembled b=3

‘\\‘__~ L 102
N e

102 4

T T T T T T
1 2 3 1 5 6 7 1 2 3 4 5 6

polynomial order pelynomial order
Memory bandwidth (left) and FLOPs per dof (right) to apply a Jacobian
matrix, obtained from discretizations of a b-variable PDE system. Assembled

matrix vs matrix-free (exploits the tensor product structure by either storing at
g-points or computing on the fly)

-

W CLEED
[Courtesy: Jed Brown] ‘
EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo

Performance
00000000 0000

Miniapps Conclusions
(oo}

0000000 o

Vector form

The system (1) can be rewritten in vector form

0
a(: +V - F(q)=S(q), (3)
for the state variables
P < volume mass density
q= U= pu < momentum density (4)

E = pe < energy density

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps
00000000 0000 (oo} 0000000

Vector form

The system (1) can be rewritten in vector form

9q

ot +V-F(q) =S(q),

for the state variables
P < volume mass density
q= U =pu < momentum density
E = pe + energy density

where
u
Uugu)/p+Pls—o ,
E+P)U/p—(u-0o+kVT)

(
(
(pgk

F(q) =

Conclusions
o

N
|- CEEDQO

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 o

Space discretization

We use high-order finite/spectral elements: high-order Lagrange polynomials
over non-uniformly spaced nodes {x:}f_o, the Legendre-Gauss-Lobatto (LGL)
points (roots of the p™-order Legendre polynomial P,,). We let
RO Q= UeleQe, with N, disjoint hexaedral elements.

The physical coordmates are x = (x,Y,z) € Q., while the reference coords are
=(X,Y,Z2)el=[-1,13

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 o

Space discretization

We use high-order finite/spectral elements: high-order Lagrange polynomials
over non-uniformly spaced nodes {x:}f_o, the Legendre-Gauss-Lobatto (LGL)
points (roots of the p™-order Legendre polynomial P,,). We let
RO Q= UeleQe, with N, disjoint hexaedral elements.

The physical coordmates are x = (x,Y,z) € Q., while the reference coords are
=(X,Y,Z2)el=[-1,13

Define the discrete solution
P
an (0 =3 Pi(x)g” (5)
k=1

with P the number of nodes in the element e.

We use tensor-product bases Pj; = hi(X)h;(Y)hy(Z).

N
k CEEDQO

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps
00000000 0000 (oo} 0000000

Strong and weak formulations
The strong form of (4):

ot

J v(aq—N—l—V-F(QN]) dQ:J vS(qn)dQ, WweV,
Q o

with V, ={v e H}(Q.)[ve P,(I),e=1,..., Nk
Weak form:

J vaq—NdQJrJ vﬁ~F(qN)dQ—J Vv F(qy) dQ =
o ot r Q

J vS(qn)dQ, W eV,
Q

Conclusions
o

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting

22/22

Introduction Live demo Performance Miniapps
00000000 0000 (oo} 0000000

Strong and weak formulations
The strong form of (4):

Conclusions
o

0
J v(&Jrv-F(qN)) dQ:J VvS(qn) dQ, Y eV, (6)
fo} ot o}
with V, ={v e H}(Q.)[ve P,(I),e=1,..., Nk
Weak form:
aqn —~ o
v——dQ+ | vin-F(qy)dQ—| Vv -F(qn)dQ =
o ot r o
J v8(qn) dQ, Vv eV,)
Q
Explicit time discretization: L . N
Implicit time discretization:
AVt =aR ALY bk, (8) f(qn) = g(t"*, gy, 4n) =0,
= dn(dn) = xqn +2n (9)
adaptive Runge-Kutta-Fehlberg (RKF4-5) cmethod
method
libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 o

Application example: Density current

A cold air bubble drops by convection in a neutrally stratified
atmosphere.

Its initial condition is defined in terms of the Exner pressure, 7t(x, t), and
potential temperature, 0(x, t), that relate to the state variables via

Py ey
= 0 axt)moe 10
P (Cp_cv)e(x,t)n(x, Jer e, (10a2)

e =c,0(x,t)m(x,t) +u-u/2+gz, (10b)

where Pg is the atmospheric pressure.

BCs: free slip for u, no-flux for mass and energy densities.

e

o
§ CEED

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

order: p =10, Q = [0,6000]> m x [0,3000] m, elem. resolution: 500 m, FEM

nodes: 893101

" CEED

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 00 0000000 o

Recent Developments: Implicit time-stepping

Ny
Q' cscae oscrenzanons

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 00 0000000 o

Recent Developments: PHASTA Integration

In collaboration with PHASTA (FastMath) we have worked on libCEED's
integration.

[Ref: phasta.scigap.org]

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance

Miniapps Conclusions
00000000 0000 [e]e] 0000000 o
Recent Developments: Stabilization methods

We have added Streamline Upwind (SU) and Streamline
Upwind/Petrov-Galerkin (SUPG) stabilization methods to our
Navier-Stokes example.
For the advection case:
Not stabilized version. Stabilized version.
R o]
libCEED tutorial

CEED 4th Annual Meeting 22/22

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 00 0000000 o

Recent Developments: BPs on the cubed-sphere

Converted BP1 (Mass operator) & BP3 (Poisson’s equation) on the
cubed-sphere as a prototype for shallow-water equations solver

(11a)
(11b)
% CEED

§ EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 o

Conclusions

@ We have showed libCEED's performance
portability on several architectures, when
integrated with PETSc and MFEM

@ We have demonstrated the use of libCEED
with PETSc for the numerical high-order
solutions of

o Full compressible Navier-Stokes equations

@ We have included implicit time-stepping and
SU/SUPG stabilization methods

W CLEED

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 o

libCEED backends

/cpu/self/ref/*: | with * reference serial and blocked implementations
/cpu/self/avx/*: | AVX (Advanced Vector Extensions instruction sets)
with * reference serial and blocked implementations
/cpu/self/xsmm/*: | LIBXSMM (Intel library for small dense/sparse mat-multiply)
with * reference serial and blocked implementations

/*/occa: | OCCA (just-in-time compilation)

with *: CPU, GPU, OpenMP (Open Multi-Processing: API),
OpenCL (framework for CPUs, GPUs, etc.)

/gpu/magma: | CUDA MAGMA (dense Linear Algebra library for GPUs and
multicore architectures) kernels

/gpu/cuda/*: | CUDA with *: ref (reference pure CUDA kernels),

reg (CUDA kernels using one thread per element),

shared, optimized CUDA kernels using shared memory

gen, optimized CUDA kernels using code generation

Same source code can call multiple CEEDs with different backends. On-device
operator implementation with unique interface
CEED

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 (oo} 0000000 o

Tensor contractions

Let {xi}]_, denote the LGL nodes with the corresponding interpolants
{WPIP_,. Choose a quadrature rule with nodes {212 | and weights
{w.lQ}. The basis evaluation, derivative, and integration matrices are

BE” =P (q2), DIP =03, P (qP), and W = w8y, In 3D:

B=B®B®B (12)
Dy=D®B®B (13)
D;=B®D®B (14)
D, =B®B®D (15)
W=WaWeW (16)

These tensor-product operations cost 2(p3Q + p?Q? + pQ3) and touch
only O(p® + Q3) memory. In the spectral element method, when the
same LGL points are reused for quadrature (i.e., a collocated method
with Q =p + 1), then B =1 and D reduces to O(p*). P
W (EEJ

N EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

Introduction Live demo Performance Miniapps Conclusions
00000000 0000 00 0000000 o

Geometry on the sphere

Transform x = ()Oc, 1j Z) on the sphere <
x = (x,y,z) on the discrete surface —
X=(XY)el=[-11]

ox Cx dx
0X 3x2) 0% (3x3) 0X (3x2)
qo 5
L7 - a o o
- X 0x
|I| = |coly a_X x colp a_X

g3,

CEEU

EXASCALE DISCRETIZATIONS

libCEED tutorial CEED 4th Annual Meeting 22/22

	Introduction
	Live demo
	Performance
	Noether

	Miniapps
	Conclusions

	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

