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Is this tutorial for you?

Are you:

A Finite Elements library or app developer?

A scientist that wants to solve a PDE fast?

An algorithm developer that wants to evaluate/apply new FE

methods?

A solver developer that wants to easily compose FE tech?

A perf engineer and/or vendor rep who wants to understand the

essential algebraic needs of high-performance FE?

We’ve got you covered!
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libCEED: the library within CEED (Center for Efficient Exascale Discretizations)

Primary target: high-order finite/spectral
element methods (FEM/SEM) exploiting
tensor-product structure

Open source (BSD-2 license) C library with
Fortran and Python interfaces

Releases: v0.1 (January 2018), v0.2 (March
2018), v.0.3 (September 2018), v0.4
(March 2019), v0.5 (September 2019),
v0.6 (March 2020)

For latest release:

Kolev T., Fischer P., Abdelfattah A., Ananthan S., Barra V., Beams N., Brown
J. et al., CEED ECP Milestone Report: Improve performance and capabilities
of CEED-enabled ECP applications on Summit/Sierra (2020, March 31st) DOI:
http://doi.org/10.5281/zenodo.3860804

libCEED tutorial CEED 4th Annual Meeting 2 / 22
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libCEED backends

  

Pure C

AVX

LIBXSMM

OCCA

Pure CUDA

Pure HIP

MAGMA

CPU

GPU

libCEED

MFEM

Nek5000

….

PETSc
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libCEED decomposition

E - CeedElemRestriction, local gather/scatter

B - CeedBasis, provides basis operations such as interp and grad

D - CeedQFunction, representation of PDE at quadrature points

AL - CeedOperator, aggregation of libCEED objects

libCEED tutorial CEED 4th Annual Meeting 4 / 22
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Point-wise QFunctions

User-defined
QFunctions:

−∇ · (κ(x)∇u)
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libCEED’s Python interface

Classes:

Ceed Vector ElemRestriction

Basis QFunction Operator
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libCEED’s Python interface

Classes:

Ceed Vector ElemRestriction

Basis QFunction Operator

CeedVector’s data L999
9K

L9999K

numpy.array

numba.cuda.device array
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libCEED’s Python interface

Ceed ElemRestriction

Basis QFunction Operator

More details:

Barra V., Brown J., Thompson J., Dudouit Y., High-performance op-
erator evaluations with ease of use: libCEED’s Python interface, Pro-
ceedings of the 19th Python in Science Conference (2020, July 12) DOI:
http://doi.org/10.25080/Majora-342d178e-00c

libCEED tutorial CEED 4th Annual Meeting 6 / 22
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Documentation

Our (very first!) user manual can be found at:

https://libceed.readthedocs.io

libCEED tutorial CEED 4th Annual Meeting 7 / 22
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libCEED’s Python interface tutorials

More info on our Python interface and interactive Jupyter notebook
tutorials can be found at:

https://qrgo.page.link/YvwiP

libCEED tutorial CEED 4th Annual Meeting 8 / 22
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libCEED + PETSc

For the purpose of separation of concerns (e.g., mesh handling or
time-stepping) we use PETSc for some hands-on exercises in this tutorial.

Note!

If you want to visualize the outputs produced by some of our
miniapps in .vtu or .vtk format, it is recommended that you
use Paraview or Visit.

libCEED tutorial CEED 4th Annual Meeting 9 / 22
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If you need PETSc on your machine

PETSc can be found on ALCF, OLCF, NERSC facilities. But if you want
to experiment locally on your machine:

$ git clone git@gitlab.com:petsc/petsc.git

$ cd petsc

$ export PETSC DIR=$PWD

$ ./configure PETSC ARCH=arch-tutorial-debug-no-fortran

--with-fortran-bindings=0

$ make PETSC DIR=$PETSC DIR \
PETSC ARCH=arch-tutorial-debug-no-fortran all

$ make PETSC DIR=$PETSC DIR \
PETSC ARCH=arch-tutorial-debug-no-fortran check

libCEED tutorial CEED 4th Annual Meeting 10 / 22
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Download and build libCEED

Now we are ready to download and build libCEED in a sibling directory
relative to the one were we have just built PETSc.

$ cd ../

$ git clone git@github.com:CEED/libCEED.git

$ cd libCEED

$ make

To build and run our libCEED+PETSc examples:

$ cd examples/petsc

$ make PETSC DIR=$PETSC DIR \
PETSC ARCH=arch-tutorial-debug-no-fortran

$./bpsraw

libCEED tutorial CEED 4th Annual Meeting 11 / 22
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Online tutorial

If you can’t/don’t want to install locally on your machine, you can follow
this tutorial online on Binder

https://bit.ly/

libceed-petsc-tutorial

libCEED tutorial CEED 4th Annual Meeting 12 / 22
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Noether

Performance on an AMD EPYC: libXSMM
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Noether (2x EPYC 7452), gcc-10
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Figure: 2x AMD EPYC 7452 (32-core) with gcc-10 compiler. LIBXSMM blocked backend
(q = P+ 1, P = p+ 1) with respect to time (left) and problem size (right)
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Noether

GPU results: MFEM + libCEED

Results by Yohann Dudouit on Lassen (LLNL): CUDA-ref (left) and CUDA-gen
(right) backends performance for BP3 on a NVIDIA V100 GPU.

libCEED tutorial CEED 4th Annual Meeting 14 / 22
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CFD miniapps: a compressible Navier-Stokes solver

∂ρ

∂t
+∇ ·U = 0 , (1a)

∂U

∂t
+∇ ·

(
U⊗U
ρ

+ PI3

)
+ ρgk = ∇ · σ , (1b)

∂E

∂t
+∇ ·

(
(E+ P)U

ρ

)
= ∇ · (u · σ+ k∇T) , (1c)

where σ = µ(∇u+ (∇u)T + λ(∇ · u)I3), and
Eq. of state: (cp/cv − 1) (E−U ·U/(2ρ) − ρgz) = P

libCEED tutorial CEED 4th Annual Meeting 15 / 22
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BPs on the cubed-sphere

Converted BP1 (Mass operator) & BP3 (Poisson’s equation) on the
cubed-sphere as a prototype for shallow-water equations solver (WIP)

∂u

∂t
= −(ω+ f)k̂× u−∇

(
1

2
|u|2 + g(h+ hs)

)
(2a)

∂h

∂t
= −∇ · (h0 + h)u (2b)

libCEED tutorial CEED 4th Annual Meeting 16 / 22
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Solid mechanics miniapp

Arbitrary order solid mechanics mini-app on unstructured meshes

Three modes:
Linear elasticity
Neo-Hookean hyperelasticity at small strain
Neo-Hookean hyperelasticity at finite strain

libCEED tutorial CEED 4th Annual Meeting 17 / 22
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Solid mechanics miniapp

Solver:

PETSc SNES nonlinear solver with load increments

Preconditioned CG on linearized problem

Preconditioning:

p-multigrid with matrix-free transfer operators

Jacobi smoothing with true operator diagonal

AMG on the coarse level

Runtime selection of CPU or GPU backends

libCEED tutorial CEED 4th Annual Meeting 18 / 22
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p-multigrid

3 level multigrid with PETSc PCMG

pfSmooth

pmSmooth

pc

pm Smooth

pf Smooth

Restriction

Restriction Interpolation

Interpolation

Smoother - Jacobi with operator diagonal

Coarse Solve - AMG on liner elements

libCEED tutorial CEED 4th Annual Meeting 19 / 22
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Grid transfer operators

Restriction / Interpolation is largely a basis operation

General libCEED Operator
AL = ETBTDBE

Interpolation Operator
Actof = ETc I

1
m
BctofEf

Interpolation basis
Bctof = R

−1QTBc
Bf = QR

libCEED tutorial CEED 4th Annual Meeting 20 / 22
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Current support

p-multigrid

CeedOperatorMultigridLevelCreate(CeedOperator opFine ,

CeedVector PMultFine ,

CeedElemRestriction rstrCoarse ,

CeedBasis basisCoarse , CeedOperator *opCoarse ,

CeedOperator *opProlong , CeedOperator *opRestrict)

Operator Diagonal

CeedOperatorLinearAssembleDiagonal(CeedOperator op,

CeedVector assembled , CeedRequest *request)

Point Block Diagonal

CeedOperatorLinearAssemblePointBlockDiagonal(

CeedOperator op, CeedVector assembled ,

CeedRequest *request)

libCEED tutorial CEED 4th Annual Meeting 21 / 22
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Outlook

Ongoing and future work:

Algorithmic differentiation of Q-Functions

Ongoing work on CUDA and HIP
optimizations

Complete SWE solver on the cubed-sphere

We always welcome contributors and users
https://github.com/CEED/libCEED

Acknowledgements: Exascale Computing Project (17-SC-20-SC)

Thank you!
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Why matrix-free? And why high-order?

Memory bandwidth (left) and FLOPs per dof (right) to apply a Jacobian
matrix, obtained from discretizations of a b-variable PDE system. Assembled
matrix vs matrix-free (exploits the tensor product structure by either storing at
q-points or computing on the fly)

[Courtesy: Jed Brown]

libCEED tutorial CEED 4th Annual Meeting 22 / 22
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Vector form

The system (1) can be rewritten in vector form

∂q

∂t
+∇ · F(q) = S(q) , (3)

for the state variables

q =

 ρ

U ≡ ρu
E ≡ ρe

 ← volume mass density
← momentum density
← energy density

(4)

where

F(q) =

 U

(U⊗U)/ρ+ PI3 − σ
(E+ P)U/ρ− (u · σ+ k∇T)

 ,

S(q) = −

 0

ρgk̂

0



libCEED tutorial CEED 4th Annual Meeting 22 / 22
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Space discretization

We use high-order finite/spectral elements: high-order Lagrange polynomials
over non-uniformly spaced nodes, {xi}

p
i=0, the Legendre-Gauss-Lobatto (LGL)

points (roots of the pth-order Legendre polynomial Pp). We let

R3 ⊃ Ω =
⋃Ne

e=1Ωe, with Ne disjoint hexaedral elements.

The physical coordinates are x = (x,y, z) ∈ Ωe, while the reference coords are
X = (X, Y,Z) ∈ I = [−1, 1]3.

Define the discrete solution

qN(x, t)(e) =
P∑
k=1

ψk(x)q
(e)
k (5)

with P the number of nodes in the element e.

We use tensor-product bases ψkji = hi(X)hj(Y)hk(Z).

libCEED tutorial CEED 4th Annual Meeting 22 / 22



Introduction Live demo Performance Miniapps Conclusions

Space discretization

We use high-order finite/spectral elements: high-order Lagrange polynomials
over non-uniformly spaced nodes, {xi}

p
i=0, the Legendre-Gauss-Lobatto (LGL)

points (roots of the pth-order Legendre polynomial Pp). We let

R3 ⊃ Ω =
⋃Ne

e=1Ωe, with Ne disjoint hexaedral elements.

The physical coordinates are x = (x,y, z) ∈ Ωe, while the reference coords are
X = (X, Y,Z) ∈ I = [−1, 1]3.

Define the discrete solution

qN(x, t)(e) =
P∑
k=1

ψk(x)q
(e)
k (5)

with P the number of nodes in the element e.

We use tensor-product bases ψkji = hi(X)hj(Y)hk(Z).

libCEED tutorial CEED 4th Annual Meeting 22 / 22



Introduction Live demo Performance Miniapps Conclusions

Strong and weak formulations
The strong form of (4):∫

Ω

v

(
∂qN
∂t

+∇ · F(qN)
)
dΩ =

∫
Ω

vS(qN)dΩ , ∀v ∈ Vp (6)

with Vp = {v ∈ H1(Ωe) | v ∈ Pp(I), e = 1, . . . ,Ne}.
Weak form: ∫

Ω

v
∂qN
∂t

dΩ+

∫
Γ

vn̂ · F(qN)dΩ−

∫
Ω

∇v · F(qN)dΩ =∫
Ω

vS(qN)dΩ , ∀v ∈ Vp (7)

Explicit time discretization:

qn+1
N = qnN + ∆t

s∑
i=1

biki , (8)

adaptive Runge-Kutta-Fehlberg (RKF4-5)
method

Implicit time discretization:

f(qN) ≡ g(tn+1,qN, q̇N) = 0 ,

q̇N(qN) = αqN + zN (9)

α-method

libCEED tutorial CEED 4th Annual Meeting 22 / 22
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Application example: Density current

A cold air bubble drops by convection in a neutrally stratified
atmosphere.

Its initial condition is defined in terms of the Exner pressure, π(x, t), and
potential temperature, θ(x, t), that relate to the state variables via

ρ =
P0

(cp − cv)θ(x, t)
π(x, t)

cv
cp−cv , (10a)

e =cvθ(x, t)π(x, t) + u · u/2 + gz , (10b)

where P0 is the atmospheric pressure.

BCs: free slip for u, no-flux for mass and energy densities.

libCEED tutorial CEED 4th Annual Meeting 22 / 22



Introduction Live demo Performance Miniapps Conclusions

Density current

order: p = 10, Ω = [0, 6000]2 m× [0, 3000] m, elem. resolution: 500 m, FEM
nodes: 893101

libCEED tutorial CEED 4th Annual Meeting 22 / 22
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Recent Developments: Implicit time-stepping

libCEED tutorial CEED 4th Annual Meeting 22 / 22
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Recent Developments: PHASTA Integration

In collaboration with PHASTA (FastMath) we have worked on libCEED’s
integration.

[Ref: phasta.scigap.org]

libCEED tutorial CEED 4th Annual Meeting 22 / 22
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Recent Developments: Stabilization methods

We have added Streamline Upwind (SU) and Streamline
Upwind/Petrov-Galerkin (SUPG) stabilization methods to our
Navier-Stokes example.

For the advection case:

Not stabilized version. Stabilized version.

libCEED tutorial CEED 4th Annual Meeting 22 / 22
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Recent Developments: BPs on the cubed-sphere

Converted BP1 (Mass operator) & BP3 (Poisson’s equation) on the
cubed-sphere as a prototype for shallow-water equations solver

∂u

∂t
= −(ω+ f)k̂× u−∇

(
1

2
|u|2 + g(h+ hs)

)
(11a)

∂h

∂t
= −∇ · (h0 + h)u (11b)
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Conclusions

We have showed libCEED’s performance
portability on several architectures, when
integrated with PETSc and MFEM

We have demonstrated the use of libCEED
with PETSc for the numerical high-order
solutions of

Full compressible Navier-Stokes equations

We have included implicit time-stepping and
SU/SUPG stabilization methods

libCEED tutorial CEED 4th Annual Meeting 22 / 22
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libCEED backends

/cpu/self/ref/*: with * reference serial and blocked implementations

/cpu/self/avx/*: AVX (Advanced Vector Extensions instruction sets)

with * reference serial and blocked implementations

/cpu/self/xsmm/*: LIBXSMM (Intel library for small dense/sparse mat-multiply)

with * reference serial and blocked implementations

/*/occa: OCCA (just-in-time compilation)

with *: CPU, GPU, OpenMP (Open Multi-Processing: API),

OpenCL (framework for CPUs, GPUs, etc.)

/gpu/magma: CUDA MAGMA (dense Linear Algebra library for GPUs and

multicore architectures) kernels

/gpu/cuda/*: CUDA with *: ref (reference pure CUDA kernels),

reg (CUDA kernels using one thread per element),

shared, optimized CUDA kernels using shared memory

gen, optimized CUDA kernels using code generation

Same source code can call multiple CEEDs with different backends. On-device
operator implementation with unique interface
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Tensor contractions
Let {xi}

p
i=0 denote the LGL nodes with the corresponding interpolants

{ψpi }
p
i=0. Choose a quadrature rule with nodes {qQi }

Q
i=0 and weights

{wQi }. The basis evaluation, derivative, and integration matrices are

BQpij = ψpj (q
Q
i ), D

Qp
ij = ∂xψ

p
j (q

Q
i ), and WQ

ij = w
Q
i δij. In 3D:

B =B⊗ B⊗ B (12)

D0 =D⊗ B⊗ B (13)

D1 =B⊗D⊗ B (14)

D2 =B⊗ B⊗D (15)

W =W ⊗W ⊗W (16)

These tensor-product operations cost 2(p3Q+ p2Q2 + pQ3) and touch
only O(p3 +Q3) memory. In the spectral element method, when the
same LGL points are reused for quadrature (i.e., a collocated method
with Q = p+ 1), then B = I and D reduces to O(p4).
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Geometry on the sphere

x

◦
x

q0

q1

q2

q3

Transform
◦
x = (

◦
x,

◦
y,

◦
z) on the sphere ↪→

x = (x,y, z) on the discrete surface ↪→
X = (X, Y) ∈ I = [−1, 1]2

∂
◦
x

∂X (3×2)
=
∂
◦
x

∂x (3×3)

∂x

∂X (3×2)

|J| =

∣∣∣∣∣col1
(
∂
◦
x

∂X

)
× col2

(
∂
◦
x

∂X

)∣∣∣∣∣
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