
libCEED: A Case Study in
Hidden Benefits of the Bridge Pattern

Jeremy L Thompson,
Natalie Beams, Jed Brown, and Yohann Dudouit

University of Colorado Boulder

jeremy.thompson@colorado.edu

July 31, 2020

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 1

libCEED Team

Developers: Ahmad Abdelfattah1, Valeria Barra2,
Natalie Beams1, Jed Brown2, Jean-Sylvain Camier3,
Veselin Dobrev3, Yohann Dudouit3, Leila Ghaffari2,
Tzanio Kolev3, David Medina4, Thilina Rathnayake5,
Jeremy L. Thompson2, & Stan Tomov5

Grant: Exascale Computing Project (17-SC-20-SC)

1: University of Tennesse
2: University of Colorado, Boulder
3: Lawrence Livermore National Laboratory
4: Occalytics LLC
5: University of Illinois at Urbana-Champaign

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 2

Overview

libCEED is an extensible library that provides a portable algebraic
interface and optimized implementations of high-order operators

We have optimized implementations for multiple architectures

Bridge design pattern offers performance portability
as well as improved debugability and internal design documentation

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 3

Overview

1 Introduction

2 libCEED Design

3 Backend Development

4 Future Work

5 Questions

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 4

Introduction

Center for Efficient Exascale Discretizations

DoE exascale co-design center

Design discretization algorithms for exascale hardware that deliver
significant performance gain over low order methods

Collaborate with hardware vendors and software projects for exascale
hardware and software stack

Provide efficient and user-friendly unstructured PDE discretization
component for exascale software ecosystem

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 5

libCEED Design

libCEED Philosophy

libCEED provides purely algebraic interface for matrix-free
evaluation of arbitrary polynomial order PDE operators

libCEED design approach:

Optimized implementations for multiple architectures

Runtime selection of backend implementation

Single source user PDE quadrature point functions

Repository: https://github.com/CEED/libCEED

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 6

libCEED Design

libCEED Backends

Pure C

AVX

LIBXSMM

OCCA

Pure CUDA

Pure HIP

MAGMA

CPU

GPU

libCEED

MFEM

Nek5000

….

PETSc

Natural use case for bridge pattern

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 7

libCEED Design

libCEED Operator Decomposition

AL = GTBTDBG

G - CeedElemRestriction, local gather/scatter

B - CeedBasis, provides basis operations such as interp and grad

D - CeedQFunction, representation of PDE at quadrature points

AL - CeedOperator, aggregation of Ceed objects for local action of operator

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 8

libCEED Design

User QFunction Source

User QFunction Code:
// ---- Fuvisc

const CeedInt Fuviscidx [3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}};

for (CeedInt j=0; j<3; j++)

for (CeedInt k=0; k<3; k++)

dv[k][j+1][i] -= wJ*(Fu[Fuviscidx[j][0]]* dXdxdXdxT[k][0] +

Fu[Fuviscidx[j][1]]* dXdxdXdxT[k][1] +

Fu[Fuviscidx[j][2]]* dXdxdXdxT[k][2]);

Compiled Assembly:
dv[k][j+1][i] -= wJ*(Fu[Fuviscidx[j][0]]* dXdxdXdxT[k][0] +

b08d: c5 7d 28 d0 vmovapd %ymm0 ,% ymm10

Fu[Fuviscidx[j][1]]* dXdxdXdxT[k][1] +

b091: c4 42 c5 b8 d3 vfmadd231pd %ymm11 ,%ymm7 ,%ymm10

b096: c5 fd 28 84 24 c8 04 vmovapd 0x4c8(%rsp),%ymm0

b09d: 00 00

dv[k][j+1][i] -= wJ*(Fu[Fuviscidx[j][0]]* dXdxdXdxT[k][0] +

b09f: c4 62 f5 ac 14 07 vfnmadd213pd (%rdi ,%rax ,1) ,%ymm1 ,%ymm10

b0a5: c5 7d 11 14 07 vmovupd %ymm10 ,(%rdi ,%rax ,1)

Fu[Fuviscidx[j][1]]* dXdxdXdxT[k][1] +

b0aa: c5 7d 59 94 24 68 04 vmulpd 0x468(%rsp),%ymm0 ,%ymm10

b0b1: 00 00

Similar optimized code on other architectures

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 9

Backend Development

End Goal: Optimized Backends

CPU:

AVX instructions for vector operations, FMA

LIBXSMM for JiT optimized small matrix multiplication

GPU:

JiT to generate device kernels from user code

Fused kernels to minimize launches and data movement

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 10

Backend Development

Development Challenges

CPU:

Optimized code can be difficult to read

External library calls can be opaque

GPU:

Debugging more challenging on devices

Fused kernels can’t be incrementally tested

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 11

Backend Development

Bridge Pattern FTW

Strong encapsulation of backend implementation details from interface

Reference backends provide straightforward implementation

/cpu/self/ref/ serial
/gpu/cuda/ref
/gpu/hip/ref

Debugging backends provide additional debugging tools

/cpu/self/memcheck

Optimized backends selectively re-implement objects

/cpu/self/xsmm/blocked
/gpu/cuda/gen

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 12

Backend Development

Hidden Benefits

Stable API and ABI across implementations

Flexible and distributed development

Clear reference code for new developers

Improved debugability ,for users and developers

...

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 13

Future Work

Future Work

Further performance enhancements (GPU and CPU)

Improved mixed mesh and operator composition support

Expanded non-linear and multi-physics examples

Preconditioning based on libCEED operator decomposition

Algorithmic differentiation of user quadrature functions

We invite contributors and friendly users

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 14

Questions

Questions?

Advisors : Jed Brown1 & Adriana Gillman1

Developers: Ahmad Abdelfattah1, Valeria Barra2,
Natalie Beams1, Jed Brown2, Jean-Sylvain Camier3,
Veselin Dobrev3, Yohann Dudouit3, Leila Ghaffari2,
Tzanio Kolev3, David Medina4, Thilina Rathnayake5,
& Stan Tomov5

Grant: Exascale Computing Project (17-SC-20-SC)

1: University of Tennesse
2: University of Colorado, Boulder
3: Lawrence Livermore National Laboratory
4: Occalytics LLC
5: University of Illinois at Urbana-Champaign

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 15

Questions

libCEED: A Case Study in
Hidden Benefits of the Bridge Pattern

Jeremy L Thompson,
Natalie Beams, Jed Brown, and Yohann Dudouit

University of Colorado Boulder

jeremy.thompson@colorado.edu

July 31, 2020

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library July 31, 2020 15

	Introduction
	libCEED Design
	Backend Development
	Future Work
	Questions

