
Performance and Portability with
the libCEED Finite Element Library

Jeremy L Thompson

University of Colorado Boulder

jeremy.thompson@colorado.edu

September 18, 2018

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 1 / 20

Overview

A global sparse matrix is no longer a good representation of a
high-order linear operator

libCEED is an extensible library that provides a portable
algebraic interface and optimized implementations

We have an example of portable and adaptable implementation with
Navier-Stokes solver in libCEED and PETSc

We have results comparing performance on benchmark problems

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 2 / 20

Overview

1 Introduction

2 libCEED

3 Navier-Stokes

4 Benchmarks

5 Questions

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 3 / 20

Introduction

Assembled Matrix Cost

Memory bandwidth and ops per dof to apply a Jacobian from Qk

discretization of a b-variable PDE system using an assembled matrix
versus matrix-free exploiting the tensor product structure

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 4 / 20

Introduction

Matrix Free Implementation

Avoid global matrix assembly

Map each element to reference element

All data computed on the fly or precompute static data

Easy to parallelize across nodes

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 5 / 20

libCEED

libCEED API

BSD-2 license, C99 library with F77 interface

Releases: v0.2 March and v0.3 (imminent)

Provides on-device operator implementation

Easy to incorporate into existing code

Supports multiple types of computational devices

CPU - Reference and blocked, template for new backends
OCCA (jit) - CPU, OpenMP, OpenCL, and CUDA
MAGMA
CUDA (in final development)
One source code can call multiple CEEDs with different backends

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 6 / 20

libCEED

Operator Decomposition

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 7 / 20

libCEED

API Objects

G - CeedRestriction
Restrict to single element
User choice in ordering

B - CeedBasis
Actions on basis such as interpolation,

gradient, divergence, curl
Independent of geometry

D - CeedQFunction
Operator action at quadrature points

to include coefficient functions
Choice of when to compute metric terms and coefficents

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 8 / 20

libCEED

Device Level Operator

L = GTBTDBG - CeedOperator

libCEED objects are combined to create a CeedOperator

CeedOperator gives operator action for elements on device

User code responsible for communication between devices
A = PTLP

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 9 / 20

libCEED

Quadrature Function

Au = F (v , u) =
∫

Ω v · f0(u,∇u) +∇v · f1(u,∇u)

Au = PTGTBTDBGPu

Quadrature function at the heart of the libCEED operator

Multiple inputs and outputs

Independent operations at quadrature points, ordering and number of
elements not specified

Code will be implementation agnostic

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 10 / 20

Navier-Stokes

Navier-Stokes Formulation

Compressible Navier-Stokes

State variables: density, momentum, and total energy

Boundary conditions:
momentum - no-slip, non-penetrating
density, energy - reflecting

Initial conditions: Straka 1993

Mesh: Box domain with hexehedral mesh

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 11 / 20

Navier-Stokes

Strategy

Implemented in PETSc and libCEED

Setup phase computes geometric factors (Jacobian) and initial
conditions

Forward Euler for proof-of-concept version

Compact: ∼ 480 lines of PETSc code and ∼ 200 lines of quadrature
functions

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 12 / 20

Navier-Stokes

Navier-Stokes QFunction

s t a t i c i n t NS(vo id ∗ctx , C e e d I n t Q,
const C e e d S c a l a r ∗const ∗ in , C e e d S c a l a r ∗const ∗out) {

// I n pu t s
const C e e d S c a l a r ∗q = i n [0] , ∗dq = i n [1] , ∗qdata = i n [2] , ∗x = i n [3] ;
// Outputs
C e e d S c a l a r ∗v = out [0] , ∗vg = out [1] ;

. . .
// Quadrature Po in t Loop
f o r (C e e d I n t i =0; i<Q; i ++) {

// Setup
. . .

// The Phy s i c s

// −− Dens i t y
// −−−− u rho
vg [i +(0+5∗0)∗Q] = rho∗u [0]∗BJ [0] + rho∗u [1]∗BJ [1] + rho∗u [1]∗BJ [2] ;
vg [i +(0+5∗1)∗Q] = rho∗u [0]∗BJ [3] + rho∗u [1]∗BJ [4] + rho∗u [1]∗BJ [5] ;
vg [i +(0+5∗2)∗Q] = rho∗u [0]∗BJ [6] + rho∗u [1]∗BJ [7] + rho∗u [1]∗BJ [8] ;

// −− Momentum
. . .

// −− Tota l Energy
// −−−− (E + P) u
vg [i +(4+5∗0)∗Q] = (E + P)∗(u [0]∗BJ [0] + u [1]∗BJ [1] + u [2]∗BJ [2]) ;
vg [i +(4+5∗1)∗Q] = (E + P)∗(u [0]∗BJ [3] + u [1]∗BJ [4] + u [2]∗BJ [5]) ;
vg [i +(4+5∗2)∗Q] = (E + P)∗(u [0]∗BJ [6] + u [1]∗BJ [7] + u [2]∗BJ [8]) ;

. . .

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 13 / 20

Benchmarks

Bakeoff Problems

CEED Benchmark Problem 1
Problem:

∫
vu =

∫
vf - L2

projection

CEED Benchmark Problem 3
Problem:

∫
v∆u =

∫
vf - Poisson

Domain: 3D Cube
Elements: Hexahedral
Shape Function Order: 2-10
Quadrature Points: 43-123

Machine: CU Boulder Summit

Nodes: 1
CPUs: Intel Xeon ”Haswell”
Processors: 24 (12 used)
Compiler: Intel/17.4
MPI: Intel/17.3

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 14 / 20

Benchmarks

BP1

* Disclaimer - Results are very ’muddy’; Host code is not fully optimized
and timing is for entire host code, with setup and destruction *

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 15 / 20

Benchmarks

BP3

* Disclaimer - Results are very ’muddy’; Host code is not fully optimized
and timing is for entire host code, with setup and destruction *

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 16 / 20

Benchmarks

MFEM

Results by Thilina Rathnayake

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 17 / 20

Benchmarks

OCCA on Summit

Results by Thilina Rathnayake

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 18 / 20

Benchmarks

Future Work

Continue performance tuning

Improve GPU backends, reduce data movement

Finalize pure CUDA backend

Optimize additional geometries: tets, pyramids, and prisms

Implement non-conforming meshes

Create library of user quadrature functions

Algorithmic differentiation of quadrature functions

Composite operators, for mixed meshes and multiphysics

Contributors and friendly users welcome

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 19 / 20

Questions

Questions?

Advisor: Jed Brown1

Collaborators: Valeria Barra 1, Jean-Sylvain Camier2, Tzanio Kolev2,
Veselin Dobrev2, Tim Warburton3, David Medina4,
& Thilina Rathnayake5

Grant: Exascale Computing Project (17-SC-20-SC)

1: University of Colorado, Boulder
2: Lawrence Livermore National Laboratory
3: Virginia Polytechnic Institute and State University
4: OCCA
5: University of Illinois, Urbana-Champaign

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 20 / 20

Questions

Performance and Portability with
the libCEED Finite Element Library

Jeremy L Thompson

University of Colorado Boulder

jeremy.thompson@colorado.edu

September 18, 2018

Jeremy L Thompson (CU Boulder) libCEED Finite Element Library September 18, 2018 20 / 20

	Introduction
	libCEED
	Navier-Stokes
	Benchmarks
	Questions

