
Headquarters USAF Warfare Center

Testing - Tactics - Training

Mixed Data Type Exponential Smoothing For Reliability Prediction

This Briefing is: UNCLASSIFIED

Overview

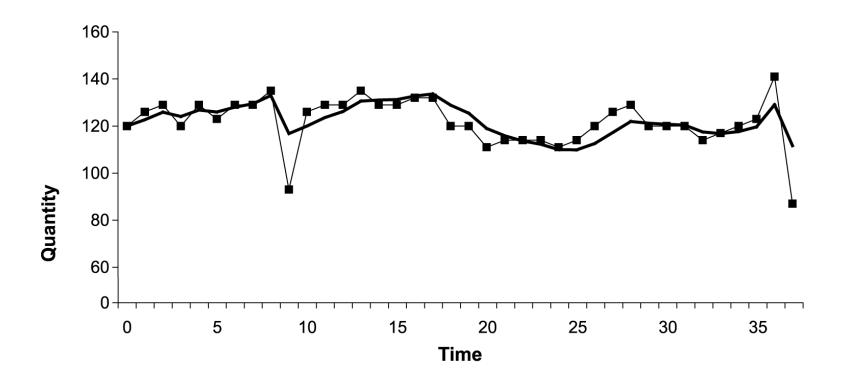
- Background
- Current Method
- Proposed Method
- Models
- Simulation
- Analysis
- Summary

Background

- Currently Advanced Weapon Systems Analyst
 - ALCM testing and analysis
 - Aircraft nuclear reliability/accuracy for USSTRATCOM

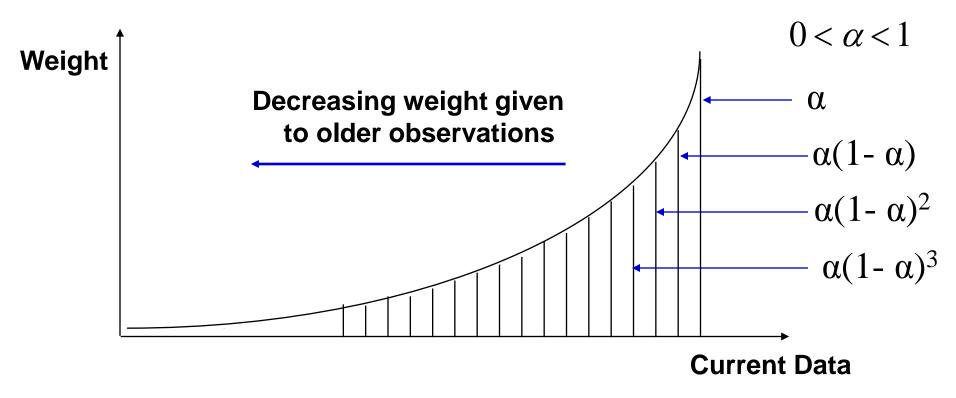
Project Background

- ALCM analysis presents challenges
 - Irregular testing schedule
 - Different types of testing
 - Annual projection required
- Exponential Smoothing selected
 - Accommodates irregular schedule with annual average
 - Allows projection


Time Series

- Data collected at uniform intervals, such as test successes over tests attempted, forms a time series
- Time series analysis consists of methods for analyzing time series data to extract meaningful statistics and other characteristics of the data

Simple Exponential Smoothing


Simple Exponential Smoothing works well with data that is stationary, or "moving sideways"

Simple Exponential Smoothing

- New forecast is the weighted sum of old forecast and new test results
- Weighting factor (smoothing constant), α is chosen to minimize error

Assumptions of Models

- Assumptions of Time Series Models
 - There is information about the past
 - This information can be quantified in the form of data
 - The pattern of the past will continue into the future
- Assumptions of Simple Exponential Smoothing
 - Error is randomly distributed
 - Data is stationary, does not exhibit a long term trend

Advantages/Drawbacks

Advantages:

- Good accuracy for short-term
- Simple model
- Not highly sensitive to small sample size
- Accounts for changes/corrections to the system
 - Recent data given more weight than old data

Drawbacks

- Assumes performance will be like recent history
- Not sensitive to dramatic positive/negative changes in data
- Inaccurate recent year data can cause significant prediction error

Overall Model

Phase 1 Phase 2 Phase o

Phase 1 Phase 2 Phase o Phase o

- System considered as a whole
- Multiple phases of operation

Current Method

- Estimates annual reliability with test success rate
- Form time series from annual reliability estimates
- Simple exponential smoothing to project future reliability

$$P_{t} = \alpha \overline{R}_{t-1} + (1 - \alpha) P_{t-1}$$

$$t > 1$$

Exponential Smoothing Equation

$$\overline{R}_{t-1} = \frac{S_{t-1}}{S_{t-1} + F_{t-1}}$$

Annual Reliability Estimate Equation

 P_t - Projection at time t

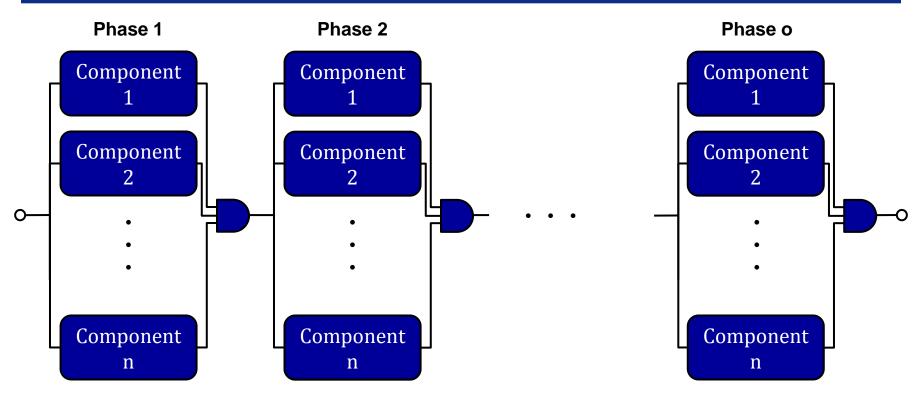
 F_t - Flight test failures at time t

 $R_{\rm t}$ - Reliability at time t

t - Time index

S_t - Flight Test successes at time t

α - Alpha value



Mixed Data Types

- Live fire testing is cost prohibitive
- Other testing stresses different system components more or less than live fire testing
- Need to model reliability at component level to incorporate different types of testing

Overall Model

- Multiple serial components
- Multiple phases of operation

Proposed Method

- Estimates annual reliability with product of component test success rates
- Incorporates mixed types of data

$$P_{t} = \alpha \overline{R}_{t-1} + (1 - \alpha) P_{t-1}$$

$$t > 1$$

Exponential Smoothing Equation

$$\overline{R}_{t-1} = \prod_{i=1}^n \prod_{j=1}^o R_{i,j}$$

Annual Reliability Estimate Equation

 P_t - Projection at time t R_t - Reliability at time t

α - Alpha valuei - Component

t - Time index

j - Phase

Test Weighting

Relative weights for different types of testing, phases of operation, and components

Test Phase	1			2			:	0							
Component	Test Type			Test Type					Test Type						
Component	FT	1	2	 m	FT	1	2		m		FT	1	2		m
1	1.0	1.0	1.3	 0.9	1.0	1.0	0.8		0.0		1.0	1.0	0.8		0.0
2	1.0	0.7	1.0	 1.0	1.0	0.9	1.5		0.5		1.0	0.9	1.5		0.5
3	0.0	0.0	0.0	 0.0	1.0	0.2	0.7		1.0		1.0	0.2	0.7		1.0
n	1.0	0.9	0.8	 1.0	1.0	0.9	1.0		1.5		1.0	0.9	1.0		1.5

$$R_{i,j} = \frac{S_{i,j,FT}}{S_{i,j,FT} + F_{i,j,FT}}$$

- Flight Testing only
- Control model

 R_t - Reliability at time t $S_{i,j,FT}$ - Flight Test successes for component i, phase j *F_{i,j,FT}* - Flight test failures for component i, phase j *t* - Time index

$$R_{i,j} = \frac{S_{i,j,FT} + S_{i,j,T1} + \dots + S_{i,j,Tm}}{S_{i,j,FT} + F_{i,j,FT} + S_{i,j,T1} + F_{i,j,T1} + \dots + F_{i,j,Tm} + F_{i,j,Tm}}$$

- Simple average
- Control model

```
R_{\rm t} - Reliability at time t F_{i,j,FT} - Flight test failures for t - Time index S_{i,j,FT} - Flight Test successes for component i, phase j component i, phase j F_{i,j,Tm} - Test type m failures for S_{i,j,Tm} - Test type m successes component i, phase j for component i, phase j
```


$$R_{i,j} = \frac{S_{i,j,FT} + S_{i,j,T1} \cdot W_{i,j,T1} + \dots + S_{i,j,Tm} \cdot W_{i,j,Tm}}{S_{i,j,FT} + F_{i,j,FT} + S_{i,j,T1} \cdot W_{i,j,T1} + F_{i,j,T1} + \dots + S_{i,j,Tm} \cdot W_{i,j,Tm} + F_{i,j,Tm}}$$

Weighted Successes Model

R₁ - Reliability at time t $S_{i,i,FT}$ - Flight Test successes for component i, phase j component i, phase j $S_{i.i.Tm}$ - Test type m successes for component i, phase j

F_{i,i,FT} - Flight test failures for $F_{i,i,Tm}$ - Test type m failures for component i, phase i

 $W_{i,i,Tm}$ - Weight for test type m, component i, phase i t - Time index

$$R_{i,j} = \frac{S_{i,j,FT} + S_{i,j,T1} + \dots + S_{i,j,Tm}}{S_{i,j,FT} + F_{i,j,FT} + S_{i,j,T1} + F_{i,j,T1} / W_{i,j,T1} + \dots + S_{i,j,Tm} + F_{i,j,Tm} / W_{i,j,Tm}}$$

Weighted Failures Model

R₁ - Reliability at time t $S_{i,i,FT}$ - Flight Test successes for component i, phase j component i, phase j $S_{i.i.Tm}$ - Test type m successes for component i, phase j

F_{i,i,FT} - Flight test failures for $F_{i,i,Tm}$ - Test type m failures for component i, phase i

 $W_{i,j,Tm}$ - Weight for test type m, component i, phase i t - Time index

Simulation

- Coded in Fortran 90
 - Input
 - Set of component reliabilities for each phase
- Number of each type of test
- Simulates 100,000 test years
- Compares estimated system reliability to input system reliability for each model
- Output
 - Mean error for estimate from input reliability for each model
 - Standard deviation of errors for each model

Simulation Parameters

Several adjustable parameters for the simulation

	Number	of types	of tests
--	--------	----------	----------

$$\sim 0.5 - \sim 0.9$$

Simulation

```
! Mixed Data Type Exponential Smoothing
! For Reliability Prediction - Model Selection
! Author: Jeremy L. Thompson
! 04 November 2011
! This algorithm compares the average performance of 4 potential models for integrating mixed data types into exponential smoothing
! for reliability prediction.
! Models:
! Model 1: [S_T1] /
           [S T1 + F T1]
! Model 2: [S_T1 + S_T1 + ... + S_Tm] /
          [S_T1 + F_T + S_T1 + F_T1 + ... + S_{Tm} + F_{Tm}]
! Model 3: [S_T1 + S_T2 * V_T2 + ... + S_Tm * V_Tm] /
           [S_T1 + F_T1 + S_T2 * W_T2 + F_T2 + ... + S_Tm * W_Tm + F_Tm]
! Model 4: [S_T1 + S_T2 + ... + S_Tm] /
           [S T1 + F T1 + S T2 + F T2 / W T2 + ... + S Tm + F Tm / W Tm]
! Notes:
        Models 1 and 2 are control models
       Models 3 and 4 are candidate models
        If a weight factor is 0, then the success or failure of that test is not included
program modelselect
! Part 0: Setup
     ! 0.1 Define variables
     implicit none
     real (kind = 8) :: random, relt, wgtf, wgts
```


Tested Parameter Combinations

Evtrama	combination	C
	COMBINATION	3

- Number of types of tests
- Number of tests of a type
- Number of components
- Number of phases
- Test weights
- True component reliabilities
- True system reliability

Mi	n	Max

\sim	
•)	
2	~
<i>.</i>	

1	1	
L		.0

30	45
<i>-</i>	

Varies

Varies

Tested Parameter Combinations

Center	comb	inations
OCHILGI	CULID	manons

- Number of types of tests
- Number of tests of a type
- Number of components
- Number of phases
- Test weights
- True component reliabilities
- True system reliability

Min	Max
-----	-----

- 3 4
- 5 5
- 37 38
- 2 2

Varies

Varies

 ~ 0.7 ~ 0.7

Analysis Parameters

Parameters were consolidated for analysis

- Number of types of tests
- Number of tests
- Ratio of live fire tests to total tests
- Number of components
- Number of phases
- True system reliability

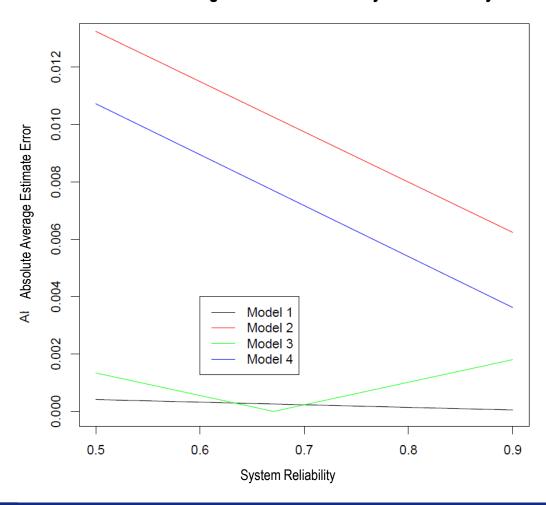
$$0.\overline{09} - 0.\overline{90}$$

$$0.5 - 0.9$$

Analysis

- MANOVA indicates that all parameters except number of phases affect model selection
- Optimal model choice depends upon system under test

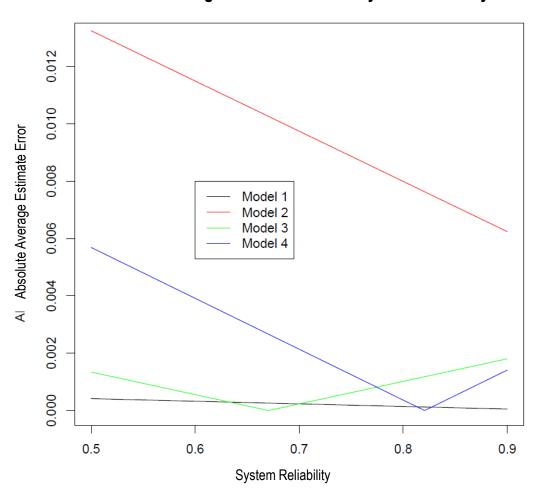
> summary(model)						
	Df	Pillai	approx F	num Df	den Df	Pr(>F)
data\$XTypes.of.Tests	1	0.05368	9.104	4	642	3.707e-07 ***
data\$System.Reliability	1	0.64649	293.512	4	642	< 2.2e-16 ***
data\$XTests	1	0.30713	71.145	4	642	< 2.2e-16 ***
data\$Ratio.Live.Total	1	0.38682	101.251	4	642	< 2.2e-16 ***
Residuals 645						



Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

1 Phase, 2 Types of Test, 20 Tests 0.25 Ratio of Live Fire Testing to Total

Absolute Average Estimate Error vs System Reliability



Testing - Tactics - Training

1 Phase, 2 Types of Test, 20 Tests 0.75 Ratio of Live Fire Testing to Total

Absolute Average Estimate Error vs System Reliability

Testing - Tactics - Training

Summary

- Incorporating mixed data types can improve reliability estimates
- Model selection depends upon system under test
 - Simulation should be run for system under test
 - Simulation should be used for sensitivity analysis also

Questions

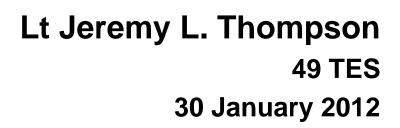
Questions?

Headquarters USAF Warfare Center

Testing - Tactics - Training

Mixed Data Type Exponential Smoothing For Reliability Prediction

This Briefing is: UNCLASSIFIED


Future Research

- Data transformation
- Confidence/prediction bands
 - Take into consideration varying confidence of annual reliability estimates

Headquarters USAF Warfare Center

Testing - Tactics - Training

Mixed Data Type Exponential Smoothing For Reliability Prediction

This Briefing is: UNCLASSIFIED