

Mixed Data Type Exponential Smoothing For Reliability Prediction

Jeremy L. Thompson

Advisor:

Professor J. Nathan Kutz

1 December 2011

- Background
- Current Method
- Proposed Method
- Models
- Simulation
- Analysis
- Summary

Background

- Mathematician for the U.S. Air Force
- Currently Advanced Weapon Systems Analyst
 - ALCM testing and analysis
 - Aircraft nuclear reliability/accuracy for USSTRATCOM

Project Background


- ALCM analysis presents challenges
 - Irregular testing schedule
 - Different types of testing
 - Annual projection required

- Exponential Smoothing selected
 - Accommodates irregular schedule with annual average
 - Allows projection

Overall Model

Phase 1 Phase 2 Phase o

- System considered as a whole
- Multiple phases of operation

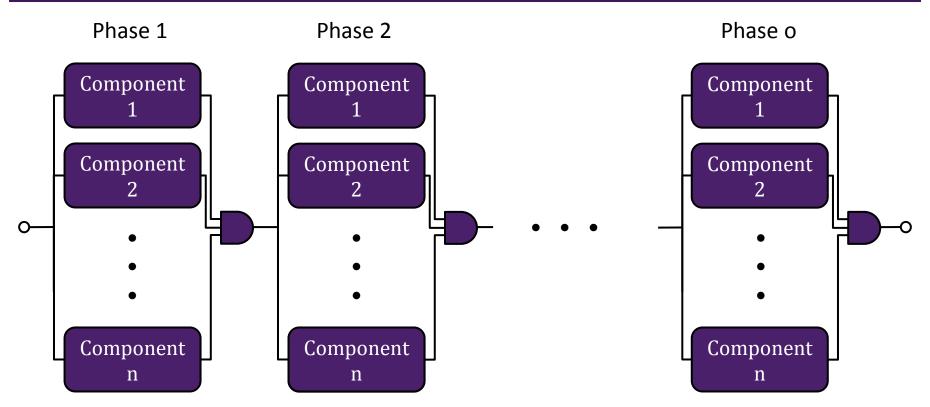
Current Method

- Estimates annual reliability with test success rate
- Form time series from annual reliability estimates
- Simple exponential smoothing to project future reliability

$$P_{t} = \alpha \overline{R}_{t-1} + (1 - \alpha)P_{t-1}$$

$$t > 1$$

$$\overline{R}_{t-1} = \frac{S_{t-1}}{S_{t-1} + F_{t-1}}$$



Mixed Data Types

- Live fire testing is cost prohibitive
- Other testing stresses different system components more or less than live fire testing
- Need to model reliability at component level to incorporate different types of testing

Overall Model

- Multiple serial components
- Multiple phases of operation

Proposed Method

- Estimates annual reliability with product of component test success rates
- Incorporates mixed types of data

$$P_{t} = \alpha \overline{R}_{t-1} + (1 - \alpha) P_{t-1}$$

$$t > 1$$

$$\overline{R}_{t-1} = \prod_{i=1}^n \prod_{j=1}^o R_{i,j}$$

Test Weighting

 Relative weights for different types of testing, phases of operation, and components

Test Phase	1			2			•••	0								
C	Test Type				Test Type				•••	Test Type						
Component	FT	1	2	•••	m	FT	1	2	•••	m	•••	FT	1	2		m
1	1.0	1.0	1.3	•••	0.9	1.0	1.0	0.8	•••	0.0	•••	1.0	1.0	0.8		0.0
2	1.0	0.7	1.0		1.0	1.0	0.9	1.5		0.5		1.0	0.9	1.5		0.5
3	0.0	0.0	0.0		0.0	1.0	0.2	0.7		1.0		1.0	0.2	0.7		1.0
n	1.0	0.9	0.8		1.0	1.0	0.9	1.0		1.5		1.0	0.9	1.0		1.5

Model 1

$$R_{i,j} = \frac{S_{i,j,FT}}{S_{i,j,FT} + F_{i,j,FT}}$$

- Flight Testing only
- Control model

$$R_{i,j} = \frac{S_{i,j,FT} + S_{i,j,T1} + \dots + S_{i,j,Tm}}{S_{i,j,FT} + F_{i,j,FT} + S_{i,j,T1} + F_{i,j,T1} + \dots + S_{i,j,Tm} + F_{i,j,Tm}}$$

- Simple average
- Control model

Model 3

$$R_{i,j} = \frac{S_{i,j,FT} + S_{i,j,T1} \cdot W_{i,j,T1} + \dots + S_{i,j,Tm} \cdot W_{i,j,Tm}}{S_{i,j,FT} + F_{i,j,FT} + S_{i,j,T1} \cdot W_{i,j,T1} + F_{i,j,T1} + \dots + S_{i,j,Tm} \cdot W_{i,j,Tm} + F_{i,j,Tm}}$$

Weighted Successes Model

Model 4

$$R_{i,j} = \frac{S_{i,j,FT} + S_{i,j,T1} + \dots + S_{i,j,Tm}}{S_{i,j,FT} + F_{i,j,FT} + S_{i,j,T1} + F_{i,j,T1} / W_{i,j,T1} + \dots + S_{i,j,Tm} + F_{i,j,Tm} / W_{i,j,Tm}}$$

Weighted Failures Model

Simulation

- Coded in Fortran 90
- Input
 - True component reliabilities for each phase
 - Number of each type of test
- Simulates 100,000 test years
- Compares estimated system reliability to true reliability for each model
- Output
 - Mean error for each model
 - Standard deviation for each model

Simulation Parameters

Several adjustable parameters for the simulation

•	Number	of types	of tests	2 -	- !	כ
					_	٠

~0.5 - ~0.9

Simulation

```
! Mixed Data Type Exponential Smoothing
! For Reliability Prediction - Model Selection
! Author: Jeremy L. Thompson
! 04 November 2011
! This algorithm compares the average performance of 4 potential models for integrating mixed data types into exponential smoothing
! for reliability prediction.
! Models:
! Model 1: [S_T1] /
        [S_T1 + F_T1]
! Model 2: [S_T1 + S_T1 + ... + S_Tm] /
         [S_T1 + F_T + S_T1 + F_T1 + ... + S_{Tm} + F_{Tm}]
! Model 3: [S_T1 + S_T2 * W_T2 + ... + S_Tm * W_Tm] /
          [S_T1 + F_T1 + S_T2 * W_T2 + F_T2 + ... + S_Tm * W_Tm + F_Tm]
! Model 4: [S_T1 + S_T2 + ... + S_Tm] /
          [S_T1 + F_T1 + S_T2 + F_T2 / W_T2 + ... + S_{Tm} + F_{Tm} / W_{Tm}]
! Notes:
       Models 1 and 2 are control models
        Models 3 and 4 are candidate models
        If a weight factor is 0, then the success or failure of that test is not included
program modelselect
! Part 0: Setup
     ! 0.1 Define variables
     implicit none
     real (kind = 8) :: random, relt, wgtf, wgts
```


Tested Parameter Combinations

	7	-	
Extreme	com	nına	tions

- Number of types of tests
- Number of tests of a type
- Number of components
- Number of phases
- Test weights
- True component reliabilities
- True system reliability

Min	Max
-----	-----

2 5

1 10

30 45

1 3

Varies

Varies

~0.5 ~0.9

Tested Parameter Combinations

		1 •	, .	
Center	com	nın	ation	C
GCHUCI	COIII	\boldsymbol{O}	auti	IJ

- Number of types of tests
- Number of tests of a type
- Number of components
- Number of phases
- Test weights
- True component reliabilities
- True system reliability

Min	Max
-----	-----

3 4

5 5

37 38

2 2

Varies

Varies

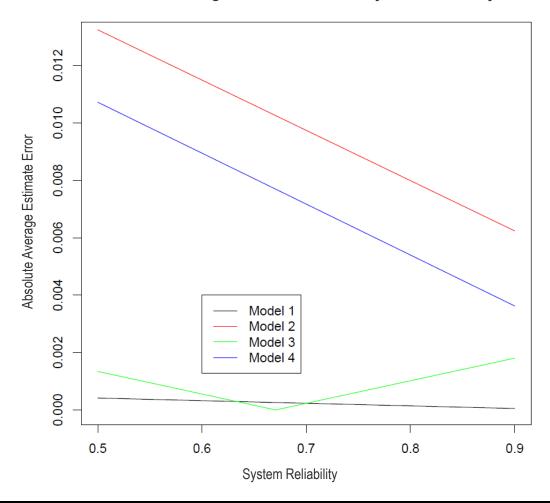
 ~ 0.7 ~ 0.7

Analysis Parameters

Parameters were consolidated for analysis

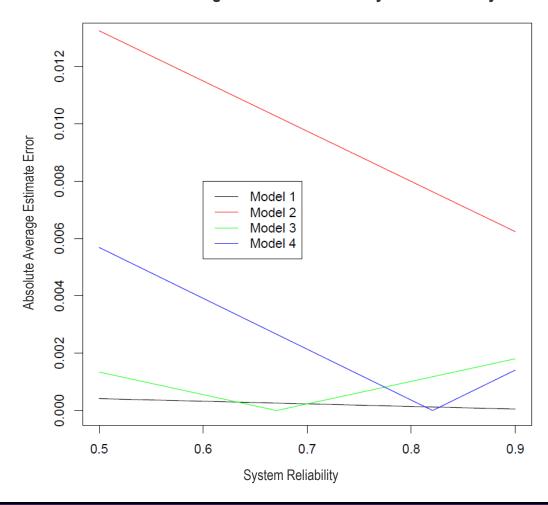
 Number of types of tests 	2 - 5
--	-------

Analysis


- MANOVA indicates that all parameters except number of phases affect model selection
- Optimal model choice depends upon system under test

```
> summary(model)
                         Df
                                   Pillai
                                                           num Df
                                               approx F
                                                                      den Df
                                                                                  Pr(>F)
data$X..Types.of.Tests
                                   0.05368
                                               9.104
                                                                                  3.707e-07 ***
                                                                      642
data$System.Reliability
                                   0.64649
                                               293.512
                                                                      642
                                                                                   < 2.2e-16 ***
data$X..Tests
                                   0.30713
                                               71.145
                                                                      642
                                                                                  < 2.2e-16 ***
data$Ratio.Live.Total
                                   0.38682
                                               101.251
                                                                      642
                                                                                  < 2.2e-16 ***
Residuals
                645
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


1 Phase, 2 Types of Test, 20 Tests 0.25 Ratio of Live Fire Testing to Total


Absolute Average Estimate Error vs System Reliability

1 Phase, 2 Types of Test, 20 Tests 0.75 Ratio of Live Fire Testing to Total

Absolute Average Estimate Error vs System Reliability

Summary

- Incorporating mixed data types can improve reliability estimates
- Model selection depends upon system under test
 - Simulation should be run for system under test
 - Simulation should be used for sensitivity analysis also

Questions?

Future Research

- Data transformation
- Confidence/prediction bands
 - Take into consideration varying confidence of annual reliability estimates

Mixed Data Type Exponential Smoothing For Reliability Prediction

Jeremy L. Thompson

Advisor:

Professor J. Nathan Kutz

1 December 2011

