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• We will discuss the algebraic structure known as a numerical 

semigroup and basic definitions related to them. 

 

• We will examine Wilf's conjecture and an approach to a possible 

solution using intersections of symmetric semigroups. 

Summary 
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• Example 
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• Example 
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Overview 
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Numerical Semigroup – 

 a subset S of N (the non-negative integers) closed under addition, 

containing zero, and having a largest integer not in S 

Definitions 

S = the set of: 

 

 

 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 →… 
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Definitions 

Embedding Dimension – 

 the minimal number of generators for the numerical semigroup, 

denoted by µ(S) 

S = < 6, 8, 13 > 

µ(S) = 3 

 

 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24… 
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Definitions 

Frobenius Number – 

 the largest integer not contained in S, denoted by g(S) 

S = < 6, 8, 13 > 

µ(S) = 3 

g(S) = 23 

 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24… 
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Definitions 

Number of ‘Small’ Elements – 

 the number of elements in the numerical semigroup less than the 

Frobenius number, denoted by n(S) 

S = < 6, 8, 13 > 

µ(S) = 3 

g(S) = 23 

n(S) = 12 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24… 
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Definitions 

Symmetric – 

 when the interval [ 0, g(S) ] contains equally as many integers in S as 

outside of S 

S = < 6, 8, 13 > 

µ(S) = 3 

g(S) = 23 

n(S) = 12 

S is symmetric 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24… 

12 elements outside of S  in [ 0, g(S) ] 
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Example 

S = < 5, 7, 16 > 

 

 

 

 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 … 
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Example 

S = < 5, 7, 16 > 

 

µ(S) = 3 

 

 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 … 
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Example 

S = < 5, 7, 16 > 

 

µ(S) = 3 

g(S) = 18 

 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 … 

 

Integrity – Service – Excellence 
 

12 



Example 

S = < 5, 7, 16 > 

 

µ(S) = 3 

g(S) = 18 

n(S) = 9 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 … 
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Example 

S = < 5, 7, 16 > 

 

µ(S) = 3 

g(S) = 18 

n(S) = 9 

S is pseudosymmetric 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 … 

 

9 elements outside of S in [ 0, g(S) – 1 ] 

9 elements inside of S  in [ 0, g(S) – 1 ] 
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Psudosymmetric – 

 when the interval [ 0, g(S) - 1 ] contains equally as many integers in S 

as outside of S 

 

 Equivalently, a numerical semigroup S with Frobenius number g(S) is 

symmetric/pseudosymmetric when S contains the maximum possible 

number of ‘small’ elements. 

Example 
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Example 
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S = < 5, 7, 16 > 

 

µ(S) = 3 

g(S) = 18 

n(S) = 9 

S is pseudosymmetric 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 … 

 

9 elements outside of S in [ 0, g(S) – 1 ] 

9 elements inside of S  in [ 0, g(S) – 1 ] 
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SO… lets get on to the cool stuff already!!! 
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Background – 

 In his paper A Circle-Of-Lights Algorithm For The “Money-Changing 

Problem” Dr. Herbert S. Wilf presented the following open question: 

Wilf's Conjecture 

Is it always true that for a numerical semigroup S: 

 

µ(S) n(S)  ≥  g(S) + 1 
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Example 

 

S = < 5, 9, 13 > 

 

µ(S) = 3 

g(S) = 21 

n(S) = 10 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 … 
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Example 

 

S = < 5, 9, 13 > 

 

µ(S) = 3 

g(S) = 21 

n(S) = 10 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 … 

 

µ(S) n(S)  ≥  g(S) + 1 
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Example 

 

S = < 5, 9, 13 > 

 

µ(S) = 3 

g(S) = 21 

n(S) = 10 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 … 

 

µ(S) n(S)  ≥  g(S) + 1 

 

3 ∙ 10  ≥  21 + 1 
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Example 

 

S = < 5, 9, 13 > 

 

µ(S) = 3 

g(S) = 21 

n(S) = 10 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 … 

 

µ(S) n(S)  ≥  g(S) + 1 

 

30  ≥  22 
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Example 

 

S = < 5, 9, 13 > 

 

µ(S) = 3 

g(S) = 21 

n(S) = 10 

 

 

… 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 … 

 

µ(S) n(S)  ≥  g(S) + 1 

 

30  ≥  22 
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Cases Proven True – 

• S is symmetric 

• S is pseudosymmetric 

• S is of maximal embedding dimension 

  (maximal embedding dimension means µ(S) = the smallest positive element in S) 

• µ(S) ≤ 3 

• g(S) ≤ 20 

• n(S) ≤ 4 

• n(S) ≥  

Wilf's Conjecture 

4

1)( Sg
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Given – 

• All numerical semigroups are the intersection of symmetric and 

pseudosymmetric numerical semigroups. 

• Wilf’s Conjecture is proven for symmetric and pseudosymmetric 

numerical semigroups. 

 

Question – 

• Can we relate a numerical semigroup’s embedding dimension and 

number of small elements back to those of parent semigroups? 

My Investigation 
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• Let S1 and S2 be numerical semigroups. 

• Let S3 = S1 ∩ S2. 

My Investigation 
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• Let S1 and S2 be numerical semigroups. 

• Let S3 = S1 ∩ S2. 

 

Then – 

• S3 is not pseudo/symmetric. 

• n(S3) ≤ max( n(S1), n(S2) ). 

• If µ(S1) = µ(S2) = 2, then µ(S3) ≥ 3. 

• If µ(S1) = µ(S2) = 3, then µ(S3) ≥ 3. 

 

My Investigation 
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Conjecture – 

 

 If  g(S1) = g(S2), µ(S1) = µ(S2), and S3 = S1 ∩ S2 ,   

 

 then  µ(S3)  >  µ(S1)  =  µ(S2) 

 

My Investigation 
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• If the conjecture is true, can it be expanded and used to make more 

progress on Wilf’s conjecture? 

 

• Is there a predictable relationship between the values of n(S3) and the 

values of  n(S1) and n(S2)?  If so, can we also utilize this relationship 

in the investigation of Wilf’s conjecture? 

Open Questions 
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Questions 

Questions? 

 

 
 

 

 

 

 

 

C09Jeremy.Thompson@USAFA.edu 
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